重命名 Spark DataFrame 中的嵌套结构列

Rename nested struct columns in a Spark DataFrame

我正在尝试更改 Scala 中 DataFrame 列的名称。我可以轻松更改直接字段的列名,但在转换数组结构列时遇到困难。

下面是我的 DataFrame 架构。

|-- _VkjLmnVop: string (nullable = true)
|-- _KaTasLop: string (nullable = true)
|-- AbcDef: struct (nullable = true)
 |    |-- UvwXyz: struct (nullable = true)
 |    |    |-- _MnoPqrstUv: string (nullable = true)
 |    |    |-- _ManDevyIxyz: string (nullable = true)

但我需要如下架构

|-- vkj_lmn_vop: string (nullable = true)
|-- ka_tas_lop: string (nullable = true)
|-- abc_def: struct (nullable = true)
 |    |-- uvw_xyz: struct (nullable = true)
 |    |    |-- mno_pqrst_uv: string (nullable = true)
 |    |    |-- man_devy_ixyz: string (nullable = true)

对于非结构列,我将按以下方式更改列名称

def aliasAllColumns(df: DataFrame): DataFrame = {
  df.select(df.columns.map { c =>
    df.col(c)
      .as(
        c.replaceAll("_", "")
          .replaceAll("([A-Z])", "_")
          .toLowerCase
          .replaceFirst("_", ""))
  }: _*)
}
aliasAllColumns(file_data_df).show(1)

如何动态更改 Struct 列名称?

据我所知,直接重命名嵌套字段是不可能的。

从一侧,您可以尝试移动到一个平面物体。

但是,如果你需要保持结构,你可以玩spark.sql.functions.struct(*cols)

Creates a new struct column.
Parameters: cols – list of column names (string) or list of Column expressions

您需要分解所有架构,生成您需要的别名,然后使用 struct 函数重新组合。

这不是最好的解决方案。但它是一些东西:)

Pd:我附上了 PySpark 文档,因为它包含比 Scala 文档更好的解释。

您可以创建一个递归方法来遍历 DataFrame 模式以重命名列:

import org.apache.spark.sql.types._

def renameAllCols(schema: StructType, rename: String => String): StructType = {
  def recurRename(schema: StructType): Seq[StructField] = schema.fields.map{
      case StructField(name, dtype: StructType, nullable, meta) =>
        StructField(rename(name), StructType(recurRename(dtype)), nullable, meta)
      case StructField(name, dtype: ArrayType, nullable, meta) if dtype.elementType.isInstanceOf[StructType] =>
        StructField(rename(name), ArrayType(StructType(recurRename(dtype.elementType.asInstanceOf[StructType])), true), nullable, meta)
      case StructField(name, dtype, nullable, meta) =>
        StructField(rename(name), dtype, nullable, meta)
    }
  StructType(recurRename(schema))
}

使用以下示例对其进行测试:

import org.apache.spark.sql.functions._
import spark.implicits._

val renameFcn = (s: String) =>
  s.replace("_", "").replaceAll("([A-Z])", "_").toLowerCase.dropWhile(_ == '_')

case class C(A_Bc: Int, D_Ef: Int)

val df = Seq(
  (10, "a", C(1, 2), Seq(C(11, 12), C(13, 14)), Seq(101, 102)),
  (20, "b", C(3, 4), Seq(C(15, 16)), Seq(103))
).toDF("_VkjLmnVop", "_KaTasLop", "AbcDef", "ArrStruct", "ArrInt")

val newDF = spark.createDataFrame(df.rdd, renameAllCols(df.schema, renameFcn))

newDF.printSchema
// root
//  |-- vkj_lmn_vop: integer (nullable = false)
//  |-- ka_tas_lop: string (nullable = true)
//  |-- abc_def: struct (nullable = true)
//  |    |-- a_bc: integer (nullable = false)
//  |    |-- d_ef: integer (nullable = false)
//  |-- arr_struct: array (nullable = true)
//  |    |-- element: struct (containsNull = true)
//  |    |    |-- a_bc: integer (nullable = false)
//  |    |    |-- d_ef: integer (nullable = false)
//  |-- arr_int: array (nullable = true)
//  |    |-- element: integer (containsNull = false)