Numba - 如何并行填充二维数组
Numba - How to fill 2D array in parallel
我有一个函数可以在 float64(x,y) 上的二维矩阵上运行。基本概念:对于每个行组合(编号行选择 2)计算减法后正值的数量(行 1 - 行 2)。在 int64(y,y) 的 2Dmatrix 中,如果值高于特定阈值,则将此值存储在索引 [row1,row2] 中,如果低于特定阈值,则存储在 [row2,row1] 中。
我已经实现了它并用@njit(parallel=False) 装饰了它,效果很好@njit(parallel=True) 似乎没有加速。为了加快整个过程,我查看了@guvectorize,效果也不错。但是,在这种情况下,我也无法弄清楚如何将 @guvectorize 与 parallel true 一起使用。
我看过 ,其中的解决方案是改用 @vecorize,但我无法将解决方案转移到我的问题上,因此我现在正在寻求帮助 :)
基本的 jitted 和 guvectorized 实现
import numpy as np
from numba import jit, guvectorize, prange
import timeit
@jit(parallel=False)
def check_pairs_sg(raw_data):
# 2D array to be filled
result = np.full((len(raw_data), len(raw_data)), -1)
# Iterate over all possible gene combinations
for r1 in range(0, len(raw_data)):
for r2 in range(r1+1, len(raw_data)):
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
@jit(parallel=True)
def check_pairs_multi(raw_data):
# 2D array to be filled
result = np.full((len(raw_data), len(raw_data)), -1)
# Iterate over all possible gene combinations
for r1 in range(0, len(raw_data)):
for r2 in prange(r1+1, len(raw_data)):
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
@guvectorize(["void(float64[:,:], int64[:,:])"],
"(n,m)->(m,m)", target='cpu')
def check_pairs_guvec_sg(raw_data, result):
for r1 in range(0, len(result)):
for r2 in range(r1+1, len(result)):
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
@guvectorize(["void(float64[:,:], int64[:,:])"],
"(n,m)->(m,m)", target='parallel')
def check_pairs_guvec_multi(raw_data, result):
for r1 in range(0, len(result)):
for r2 in range(r1+1, len(result)):
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
if __name__=="__main__":
np.random.seed(404)
a = np.random.random((512,512)).astype(np.float64)
res = np.full((len(a), len(a)), -1)
并用
测量
%timeit check_pairs_sg(a)
%timeit check_pairs_multi(a)
%timeit check_pairs_guvec_sg(a, res)
%timeit check_pairs_guvec_multi(a, res)
导致:
614 ms ± 2.54 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
507 ms ± 6.87 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
622 ms ± 3.88 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
671 ms ± 4.35 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
我全神贯注于如何将其实现为 @vectorized 或适当的并行 @guvectorize 以真正并行地填充生成的二维数组。
我想这是我尝试进一步使用 gpu 之前的第一步。
非常感谢任何帮助。
编写 Numba 代码时考虑其他编译语言
例如,考虑一个或多或少完全等效的行
实现
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
在 C++ 中。
伪代码
- 分配一个数组diff,循环raw_data[i*size_dim_1+r1](循环索引为i)
- 分配一个布尔数组,遍历整个数组 diff 并检查是否 diff[i]>0
- 循环布尔数组,获取 b_arr==True 的索引并通过 vector::push_back() 将它们保存到向量中。
- 检查矢量的大小
您代码中的主要问题是:
- 为简单操作创建临时数组
- 非连续内存访问
优化代码
删除临时数组并简化
@nb.njit(parallel=False)
def check_pairs_simp(raw_data):
# 2D array to be filled
result = np.full((raw_data.shape[0],raw_data.shape[1]), -1)
# Iterate over all possible gene combinations
for r1 in range(0, raw_data.shape[1]):
for r2 in range(r1+1, raw_data.shape[1]):
num_pos=0
for i in range(raw_data.shape[0]):
if (raw_data[i,r1]>raw_data[i,r2]):
num_pos+=1
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
删除临时数组和简化+连续内存访问
@nb.njit(parallel=False)
def check_pairs_simp_rev(raw_data_in):
#Create a transposed array not just a view
raw_data=np.ascontiguousarray(raw_data_in.T)
# 2D array to be filled
result = np.full((raw_data.shape[0],raw_data.shape[1]), -1)
# Iterate over all possible gene combinations
for r1 in range(0, raw_data.shape[0]):
for r2 in range(r1+1, raw_data.shape[0]):
num_pos=0
for i in range(raw_data.shape[1]):
if (raw_data[r1,i]>raw_data[r2,i]):
num_pos+=1
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
删除临时数组和简化+连续内存访问+并行化
@nb.njit(parallel=True,fastmath=True)
def check_pairs_simp_rev_p(raw_data_in):
#Create a transposed array not just a view
raw_data=np.ascontiguousarray(raw_data_in.T)
# 2D array to be filled
result = np.full((raw_data.shape[0],raw_data.shape[1]), -1)
# Iterate over all possible gene combinations
for r1 in nb.prange(0, raw_data.shape[0]):
for r2 in range(r1+1, raw_data.shape[0]):
num_pos=0
for i in range(raw_data.shape[1]):
if (raw_data[r1,i]>raw_data[r2,i]):
num_pos+=1
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
计时
%timeit check_pairs_sg(a)
488 ms ± 8.68 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit check_pairs_simp(a)
186 ms ± 3.83 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit check_pairs_simp_rev(a)
12.1 ms ± 226 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit check_pairs_simp_rev_p(a)
5.43 ms ± 49.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
我有一个函数可以在 float64(x,y) 上的二维矩阵上运行。基本概念:对于每个行组合(编号行选择 2)计算减法后正值的数量(行 1 - 行 2)。在 int64(y,y) 的 2Dmatrix 中,如果值高于特定阈值,则将此值存储在索引 [row1,row2] 中,如果低于特定阈值,则存储在 [row2,row1] 中。
我已经实现了它并用@njit(parallel=False) 装饰了它,效果很好@njit(parallel=True) 似乎没有加速。为了加快整个过程,我查看了@guvectorize,效果也不错。但是,在这种情况下,我也无法弄清楚如何将 @guvectorize 与 parallel true 一起使用。
我看过
基本的 jitted 和 guvectorized 实现
import numpy as np
from numba import jit, guvectorize, prange
import timeit
@jit(parallel=False)
def check_pairs_sg(raw_data):
# 2D array to be filled
result = np.full((len(raw_data), len(raw_data)), -1)
# Iterate over all possible gene combinations
for r1 in range(0, len(raw_data)):
for r2 in range(r1+1, len(raw_data)):
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
@jit(parallel=True)
def check_pairs_multi(raw_data):
# 2D array to be filled
result = np.full((len(raw_data), len(raw_data)), -1)
# Iterate over all possible gene combinations
for r1 in range(0, len(raw_data)):
for r2 in prange(r1+1, len(raw_data)):
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
@guvectorize(["void(float64[:,:], int64[:,:])"],
"(n,m)->(m,m)", target='cpu')
def check_pairs_guvec_sg(raw_data, result):
for r1 in range(0, len(result)):
for r2 in range(r1+1, len(result)):
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
@guvectorize(["void(float64[:,:], int64[:,:])"],
"(n,m)->(m,m)", target='parallel')
def check_pairs_guvec_multi(raw_data, result):
for r1 in range(0, len(result)):
for r2 in range(r1+1, len(result)):
diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
if __name__=="__main__":
np.random.seed(404)
a = np.random.random((512,512)).astype(np.float64)
res = np.full((len(a), len(a)), -1)
并用
测量%timeit check_pairs_sg(a)
%timeit check_pairs_multi(a)
%timeit check_pairs_guvec_sg(a, res)
%timeit check_pairs_guvec_multi(a, res)
导致:
614 ms ± 2.54 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
507 ms ± 6.87 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
622 ms ± 3.88 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
671 ms ± 4.35 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
我全神贯注于如何将其实现为 @vectorized 或适当的并行 @guvectorize 以真正并行地填充生成的二维数组。
我想这是我尝试进一步使用 gpu 之前的第一步。
非常感谢任何帮助。
编写 Numba 代码时考虑其他编译语言
例如,考虑一个或多或少完全等效的行
实现diff = np.subtract(raw_data[:, r1], raw_data[:, r2])
num_pos = len(np.where(diff > 0)[0])
在 C++ 中。
伪代码
- 分配一个数组diff,循环raw_data[i*size_dim_1+r1](循环索引为i)
- 分配一个布尔数组,遍历整个数组 diff 并检查是否 diff[i]>0
- 循环布尔数组,获取 b_arr==True 的索引并通过 vector::push_back() 将它们保存到向量中。
- 检查矢量的大小
您代码中的主要问题是:
- 为简单操作创建临时数组
- 非连续内存访问
优化代码
删除临时数组并简化
@nb.njit(parallel=False)
def check_pairs_simp(raw_data):
# 2D array to be filled
result = np.full((raw_data.shape[0],raw_data.shape[1]), -1)
# Iterate over all possible gene combinations
for r1 in range(0, raw_data.shape[1]):
for r2 in range(r1+1, raw_data.shape[1]):
num_pos=0
for i in range(raw_data.shape[0]):
if (raw_data[i,r1]>raw_data[i,r2]):
num_pos+=1
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
删除临时数组和简化+连续内存访问
@nb.njit(parallel=False)
def check_pairs_simp_rev(raw_data_in):
#Create a transposed array not just a view
raw_data=np.ascontiguousarray(raw_data_in.T)
# 2D array to be filled
result = np.full((raw_data.shape[0],raw_data.shape[1]), -1)
# Iterate over all possible gene combinations
for r1 in range(0, raw_data.shape[0]):
for r2 in range(r1+1, raw_data.shape[0]):
num_pos=0
for i in range(raw_data.shape[1]):
if (raw_data[r1,i]>raw_data[r2,i]):
num_pos+=1
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
删除临时数组和简化+连续内存访问+并行化
@nb.njit(parallel=True,fastmath=True)
def check_pairs_simp_rev_p(raw_data_in):
#Create a transposed array not just a view
raw_data=np.ascontiguousarray(raw_data_in.T)
# 2D array to be filled
result = np.full((raw_data.shape[0],raw_data.shape[1]), -1)
# Iterate over all possible gene combinations
for r1 in nb.prange(0, raw_data.shape[0]):
for r2 in range(r1+1, raw_data.shape[0]):
num_pos=0
for i in range(raw_data.shape[1]):
if (raw_data[r1,i]>raw_data[r2,i]):
num_pos+=1
# Arbitrary check to illustrate
if num_pos >= 5:
result[r1,r2] = num_pos
else:
result[r2,r1] = num_pos
return result
计时
%timeit check_pairs_sg(a)
488 ms ± 8.68 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit check_pairs_simp(a)
186 ms ± 3.83 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit check_pairs_simp_rev(a)
12.1 ms ± 226 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit check_pairs_simp_rev_p(a)
5.43 ms ± 49.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)