二维高斯函数不产生正确的结果

2d gaussian function does not produce correct results

我想编写一个 returns 大小为 nx x nynp.array 的函数,它包含一个中心高斯分布,均值为 mu和 sd sig。下面的代码在某些情况下有效,但在很多情况下无效 - 哪里出了问题,或者我还应该写什么来获得我需要的东西?

import matplotlib.pyplot as plt
import numpy as np

def create2dGaussian(mu, sigma, nx, ny):
    x, y = np.meshgrid(np.linspace(-nx / 2.0, +nx / 2.0, nx), np.linspace(-ny / 2.0, +ny / 2.0, ny))
    d = np.sqrt(x * x + y * y)
    g = np.exp(-((d - mu) ** 2 / (2.0 * sigma ** 2)))

    # just for debugging:
    np.set_printoptions(precision=1, suppress=True)
    print(g.shape)
    print(g)
    plt.imshow(g, cmap='jet', interpolation='nearest')
    plt.colorbar()
    plt.show()

    return g

以下是一些带有注释的测试用例:

from create2dGaussian import create2dGaussian

create2dGaussian(1, 10, 25, 25) # seems to work
create2dGaussian(1, 5, 25, 25) # the middle is not quite the peak anymore
create2dGaussian(1, 1, 25, 25) # the above problem more clearly visible
create2dGaussian(1, 1, 5, 5) # here it is extrem as the middle is now only 0.6

create2dGaussian(5, 10, 25, 25) # mean is still 1 and not 5

您的问题是,在创建数据集时,您创建的值已经具有均值和标准差。它们彼此之间的距离由 nx, ny 参数暗示。然后,当您应用高斯并提供与数据集不同的均值和标准差时,它将显示不在中心的数据集的实际均值,因为您在不查看数据的情况下指定了它。

以这个案例为例:

create2dGaussian(1, 1, 5, 5)

你告诉它的均值为 1,但分布的中心是 0。

import matplotlib.pyplot as plt
import numpy as np

def create2dGaussian(mu, sigma, nx, ny):
    x, y = np.meshgrid(np.linspace(-nx / 2.0, +nx / 2.0, nx), np.linspace(-ny / 2.0, +ny / 2.0, ny))
    d = np.sqrt(x * x + y * y)
    g = mu * np.exp(-((d - mu) ** 2 / (2.0 * sigma ** 2)))

    np.set_printoptions(precision=1, suppress=True)
    print(("x", x))
    print(("y", y))
    print(("d", d))
    plt.imshow(g, cmap='jet', interpolation='nearest')
    plt.colorbar()
    plt.show()

    return g

#create2dGaussian(1, 10, 25, 25) # seems to work
#create2dGaussian(1, 5, 25, 25) # the middle is not quite the peak anymore
#create2dGaussian(1, 5, 25, 25) # the above problem more clearly visible
create2dGaussian(1, 1, 5, 5) # here it is extrem as the middle is now only 0.6

#create2dGaussian(5.0, 10.0, 25.0, 25.0) # mean is still 1 and not 5

输出:

('x', array([
       [-2.5, -1.2,  0. ,  1.2,  2.5],
       [-2.5, -1.2,  0. ,  1.2,  2.5],
       [-2.5, -1.2,  0. ,  1.2,  2.5],
       [-2.5, -1.2,  0. ,  1.2,  2.5],
       [-2.5, -1.2,  0. ,  1.2,  2.5]]))
('y', array([
       [-2.5, -2.5, -2.5, -2.5, -2.5],
       [-1.2, -1.2, -1.2, -1.2, -1.2],
       [ 0. ,  0. ,  0. ,  0. ,  0. ],
       [ 1.2,  1.2,  1.2,  1.2,  1.2],
       [ 2.5,  2.5,  2.5,  2.5,  2.5]]))
('d', array([
       [3.5, 2.8, 2.5, 2.8, 3.5],
       [2.8, 1.8, 1.2, 1.8, 2.8],
       [2.5, 1.2, 0. , 1.2, 2.5],
       [2.8, 1.8, 1.2, 1.8, 2.8],
       [3.5, 2.8, 2.5, 2.8, 3.5]]))
('g', array([
       [0. , 0.2, 0.3, 0.2, 0. ],
       [0.2, 0.7, 1. , 0.7, 0.2],
       [0.3, 1. , 0.6, 1. , 0.3],
       [0.2, 0.7, 1. , 0.7, 0.2],
       [0. , 0.2, 0.3, 0.2, 0. ]]))

您的建议中存在对均值的混淆。在一维的情况下,说它居中就是说它的平均值是 0。对于 2D 高斯分布,可以说有两种方法,定义为 xy 的期望值。再次说它居中就是说它们都是 0

总而言之,你的密度不是中心二维高斯的密度,应该是

exp(-((x**2 +y**2) / (2.0 * sigma ** 2)))

如果高斯以 (xm, ym) 为中心,则密度为

exp(-(((x-xm)**2 +(y-ym)**2) / (2.0 * sigma ** 2)))

但是没有中心高斯均值 mu