Batch Normalization 在 tensorflow 2.0 中没有梯度?

Batch Normalization doesn't have gradient in tensorflow 2.0?

我正在尝试制作一个简单的 GAN 来从 MNIST 数据集中生成数字。然而,当我开始训练(这是习惯)时,我收到这个烦人的警告,我怀疑这是我没有像以前那样训练的原因。

请记住,这一切都在 tensorflow 2.0 中使用它的默认急切执行。

获取数据(不是那么重要)

(train_images,train_labels),(test_images,test_labels) = tf.keras.datasets.mnist.load_data()

train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]

BUFFER_SIZE = 60000
BATCH_SIZE = 256

train_dataset = tf.data.Dataset.from_tensor_slices((train_images,train_labels)).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

生成器模型(这是批量归一化所在的位置)

def make_generator_model():
    model = tf.keras.Sequential()
    model.add(tf.keras.layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
    model.add(tf.keras.layers.BatchNormalization())
    model.add(tf.keras.layers.LeakyReLU())

    model.add(tf.keras.layers.Reshape((7, 7, 256)))
    assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size

    model.add(tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
    assert model.output_shape == (None, 7, 7, 128)  
    model.add(tf.keras.layers.BatchNormalization())
    model.add(tf.keras.layers.LeakyReLU())

    model.add(tf.keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
    assert model.output_shape == (None, 14, 14, 64)    
    model.add(tf.keras.layers.BatchNormalization())
    model.add(tf.keras.layers.LeakyReLU())

    model.add(tf.keras.layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
    assert model.output_shape == (None, 28, 28, 1)

    return model

判别器模型(可能没那么重要)

def make_discriminator_model():
    model = tf.keras.Sequential()
    model.add(tf.keras.layers.Conv2D(64, (5, 5), strides=(2, 2),    padding='same'))
    model.add(tf.keras.layers.LeakyReLU())
    model.add(tf.keras.layers.Dropout(0.3))

    model.add(tf.keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
    model.add(tf.keras.layers.LeakyReLU())
    model.add(tf.keras.layers.Dropout(0.3))

    model.add(tf.keras.layers.Flatten())
    model.add(tf.keras.layers.Dense(1))

    return model

实例化模型(可能没那么重要)

generator = make_generator_model()
discriminator = make_discriminator_model()

定义损失(也许生成器损失很重要,因为这是梯度的来源)

def generator_loss(generated_output):
    return tf.nn.sigmoid_cross_entropy_with_logits(labels = tf.ones_like(generated_output), logits = generated_output)


def discriminator_loss(real_output, generated_output):
    # [1,1,...,1] with real output since it is true and we want our generated examples to look like it
    real_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(real_output), logits=real_output)

    # [0,0,...,0] with generated images since they are fake
    generated_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(generated_output), logits=generated_output)

    total_loss = real_loss + generated_loss

    return total_loss

进行优化(可能不重要)

generator_optimizer = tf.optimizers.Adam(1e-4)
discriminator_optimizer = tf.optimizers.Adam(1e-4)

发电机的随机噪声(可能不重要)

EPOCHS = 50
noise_dim = 100
num_examples_to_generate = 16

# We'll re-use this random vector used to seed the generator so
# it will be easier to see the improvement over time.
random_vector_for_generation = tf.random.normal([num_examples_to_generate,
                                                 noise_dim])

一个单一的训练步骤(这是我得到错误的地方

def train_step(images):
   # generating noise from a normal distribution
    noise = tf.random.normal([BATCH_SIZE, noise_dim])

    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
        generated_images = generator(noise, training=True)
        real_output = discriminator(images[0], training=True)
        generated_output = discriminator(generated_images, training=True)

        gen_loss = generator_loss(generated_output)
        disc_loss = discriminator_loss(real_output, generated_output)

This line >>>>>

    gradients_of_generator = gen_tape.gradient(gen_loss, generator.variables)

<<<<< This line 

    gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.variables)

    generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.variables))
    discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.variables))

THE FULL TRAIN(不重要,只是它调用 train_step)

def train(dataset, epochs):  
    for epoch in range(epochs):
        start = time.time()

        for images in dataset:
            train_step(images)

        display.clear_output(wait=True)
        generate_and_save_images(generator,
                                   epoch + 1,
                                   random_vector_for_generation)

        # saving (checkpoint) the model every 15 epochs
        if (epoch + 1) % 15 == 0:
            checkpoint.save(file_prefix = checkpoint_prefix)

        print ('Time taken for epoch {} is {} sec'.format(epoch + 1,
                                                      time.time()-start))
    # generating after the final epoch
    display.clear_output(wait=True)
    generate_and_save_images(generator,
                           epochs,
                           random_vector_for_generation)

开始训练

train(train_dataset, EPOCHS)

我得到的错误如下,

W0330 19:42:57.366302 4738405824 optimizer_v2.py:928] Gradients does 
not exist for variables ['batch_normalization_v2_54/moving_mean:0', 
'batch_normalization_v2_54/moving_variance:0', 
'batch_normalization_v2_55/moving_mean:0', 
'batch_normalization_v2_55/moving_variance:0', 
'batch_normalization_v2_56/moving_mean:0', 
'batch_normalization_v2_56/moving_variance:0'] when minimizing the
 loss.

我从生成器中得到一张图像,如下所示:

这有点像我在没有规范化的情况下所期望的。一切都会聚集到一个角落,因为有极值。

问题出在这里:

gradients_of_generator = gen_tape.gradient(gen_loss, generator.variables)

您应该只获得 可训练 变量的梯度。所以你应该把它改成

gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)

接下来的三行也是如此。 variables 字段包括诸如推理期间使用的 运行 平均批量规范之类的东西。因为在训练期间不使用它们,所以没有定义合理的梯度,尝试计算它们会导致崩溃。