Google Cloud PubSub:并非 sending/receiving 来自 Cloud Functions 的所有消息

Google Cloud PubSub: Not sending/receiving all messages from Cloud Functions

总结:我的客户端代码通过向Pub/Sub主题发布消息触发861后台Google云功能。每个 Cloud Function 执行一项任务,将结果上传到 Google 存储,并将消息发布到客户端代码正在侦听的另一个 Pub/Sub 主题。尽管执行了所有 Cloud Functions,但客户端代码并未收到所有消息(通过 Google 存储中的结果数验证)。

服务器端:我有一个后台 Google 云功能,每次向 TRIGGER Pub/Sub 主题发布消息时都会触发该功能。消息数据的自定义属性充当函数参数,具体取决于函数执行特定任务的方式。然后它将结果上传到 Google 存储中的存储桶,并向 RESULTS Pub/Sub 主题(与用于触发此功能的主题不同)发布一条消息(带有任务 ID 和执行时间详细信息)。

客户端:我需要执行 861 项不同的任务,这需要使用 861 项略有不同的输入来调用 Cloud Function。这些任务很相似,Cloud Function 执行它们需要 20 秒到 2 分钟(中位数约为 1 分钟)。我为此创建了一个 python 脚本,我从 Google 云 Shell(或本地计算机 shell)运行。客户端 python 脚本向 TRIGGER Pub/Sub 主题发布 861 条消息,同时触发尽可能多的 Cloud Functions,每个都在范围 [0, 860] 中传递一个唯一的 taskID。然后,客户端 python 脚本以 "synchronous pull" 的方式轮询 RESULTS Pub/Sub 主题以获取任何消息。 Cloud Functions 在执行任务后将消息发布到具有唯一任务 ID 和时间详细信息的 RESULTS Pub/Sub 主题。客户端使用这个唯一的 taskID 来识别消息来自哪个任务。它还有助于识别被丢弃的重复消息。

基本步骤:

  1. 客户端 python 脚本向 TRIGGER Pub/Sub 主题发布 861 条消息(每条消息都具有唯一的 taskID)并等待来自 Cloud Function 的结果消息。
  2. 调用了 861 个不同的 Cloud Functions,每个 Cloud Functions 执行一个任务,将结果上传到 Google 存储,并将消息(带有任务 ID 和执行时间详细信息)发布到 RESULTS Pub/Sub 主题。
  3. 客户端同步抓取所有消息,并将任务标记为完成。

问题: 当客户端轮询来自 RESULTS Pub/Sub 主题的消息时,我没有收到所有 taskID 的消息。我确信 Cloud Function 已被正确调用和执行(我在 Google 存储桶中有 861 个结果)。我重复了很多次,每次都会发生。奇怪的是,丢失的 taskID 的数量每次都在变化,并且不同的 taskID 在不同的 运行s 之间丢失。我还跟踪收到的重复 taskID 的数量。在 table 中给出了 5 个独立的 运行s.

中接收到、丢失和重复的唯一任务 ID 的数量。
SN   # of Tasks  Received  Missing  Repeated
1     861          860      1        25
2     861          840      21       3
3     861          851      10       1
4     861          837      24       3
5     861          856      5        1

我不确定这个问题可能是从哪里产生的。鉴于数字的随机性和丢失的 taskID,我怀疑 Pub/Sub at-least-once 交付逻辑中存在一些错误。如果在 Cloud Function 中,我睡了几秒钟而不是执行任务,例如使用 time.sleep(5),那么一切正常(我在客户端收到所有 861 taskID)。

重现此问题的代码。

在下文中,main.pyrequirements.txt 被部署为 Google Cloud Function,而 client.py 是客户端代码。 运行 具有 100 个并发任务的客户端 python client.py 100 重复了 5 次。每次丢失不同数量的 taskID。

requirements.txt

google-cloud-pubsub

main.py

"""
This file is deployed as Google Cloud Function. This function starts,
sleeps for some seconds and pulishes back the taskID.

Deloyment:
    gcloud functions deploy gcf_run --runtime python37 --trigger-topic <TRIGGER_TOPIC> --memory=128MB --timeout=300s
"""

import time
from random import randint
from google.cloud import pubsub_v1

# Global variables
project_id = "<Your Google Cloud Project ID>"  # Your Google Cloud Project ID
topic_name = "<RESULTS_TOPIC>"  # Your Pub/Sub topic name


def gcf_run(data, context):
    """Background Cloud Function to be triggered by Pub/Sub.
    Args:
         data (dict): The dictionary with data specific to this type of event.
         context (google.cloud.functions.Context): The Cloud Functions event
         metadata.
    """

    # Message should contain taskID (in addition to the data)
    if 'attributes' in data:
        attributes = data['attributes']
        if 'taskID' in attributes:
            taskID = attributes['taskID']
        else:
            print('taskID missing!')
            return
    else:
        print('attributes missing!')
        return

    # Sleep for a random time beteen 30 seconds to 1.5 minutes
    print("Start execution for {}".format(taskID))
    sleep_time = randint(30, 90)  # sleep for this many seconds
    time.sleep(sleep_time)  # sleep for few seconds

    # Marks this task complete by publishing a message to Pub/Sub.
    data = u'Message number {}'.format(taskID)
    data = data.encode('utf-8')  # Data must be a bytestring
    publisher = pubsub_v1.PublisherClient()
    topic_path = publisher.topic_path(project_id, topic_name)
    publisher.publish(topic_path, data=data, taskID=taskID)

    return

client.py

"""
The client code creates the given number of tasks and publishes to Pub/Sub,
which in turn calls the Google Cloud Functions concurrently.
Run:
    python client.py 100
"""

from __future__ import print_function
import sys
import time
from google.cloud import pubsub_v1

# Global variables
project_id = "<Google Cloud Project ID>" # Google Cloud Project ID
topic_name = "<TRIGGER_TOPIC>"    # Pub/Sub topic name to publish
subscription_name = "<subscriber to RESULTS_TOPIC>"  # Pub/Sub subscription name
num_experiments = 5  # number of times to repeat the experiment
time_between_exp = 120.0 # number of seconds between experiments

# Initialize the Publisher (to send commands that invoke Cloud Functions)
# as well as Subscriber (to receive results written by the Cloud Functions)
# Configure the batch to publish as soon as there is one kilobyte
# of data or one second has passed.
batch_settings = pubsub_v1.types.BatchSettings(
    max_bytes=1024,  # One kilobyte
    max_latency=1,   # One second
)
publisher = pubsub_v1.PublisherClient(batch_settings)
topic_path = publisher.topic_path(project_id, topic_name)

subscriber = pubsub_v1.SubscriberClient()
subscription_path = subscriber.subscription_path(
    project_id, subscription_name)


class Task:
    """
    A task which will execute the Cloud Function once.

    Attributes:
        taskID (int)       : A unique number given to a task (starting from 0).
        complete (boolean) : Flag to indicate if this task has completed.
    """
    def __init__(self, taskID):
        self.taskID = taskID
        self.complete = False

    def start(self):
        """
        Start the execution of Cloud Function by publishing a message with
        taskID to the Pub/Sub topic.
        """
        data = u'Message number {}'.format(self.taskID)
        data = data.encode('utf-8')  # Data must be a bytestring
        publisher.publish(topic_path, data=data, taskID=str(self.taskID))

    def end(self):
        """
        Mark the end of this task.
            Returns (boolean):
                True if normal, False if task was already marked before.
        """
        # If this task was not complete, mark it as completed
        if not self.complete:
            self.complete = True
            return True

        return False
    # [END of Task Class]


def createTasks(num_tasks):
    """
    Create a list of tasks and return it.
        Args:
            num_tasks (int) : Number of tasks (Cloud Function calls)
        Returns (list):
            A list of tasks.
    """
    all_tasks = list()
    for taskID in range(0, num_tasks):
        all_tasks.append(Task(taskID=taskID))

    return all_tasks


def receiveResults(all_tasks):
    """
    Receives messages from the Pub/Sub subscription. I am using a blocking
    Synchronous Pull instead of the usual asynchronous pull with a callback
    funtion as I rely on a polling pattern to retrieve messages.
    See: https://cloud.google.com/pubsub/docs/pull
        Args:
            all_tasks (list) : List of all tasks.
    """
    num_tasks = len(all_tasks)
    total_msg_received = 0  # track the number of messages received
    NUM_MESSAGES = 10  # maximum number of messages to pull synchronously
    TIMEOUT = 600.0    # number of seconds to wait for response (10 minutes)

    # Keep track of elapsed time and exit if > TIMEOUT
    __MyFuncStartTime = time.time()
    __MyFuncElapsedTime = 0.0

    print('Listening for messages on {}'.format(subscription_path))
    while (total_msg_received < num_tasks) and (__MyFuncElapsedTime < TIMEOUT):
        # The subscriber pulls a specific number of messages.
        response = subscriber.pull(subscription_path,
            max_messages=NUM_MESSAGES, timeout=TIMEOUT, retry=None)
        ack_ids = []

        # Keep track of all received messages
        for received_message in response.received_messages:
            if received_message.message.attributes:
                attributes = received_message.message.attributes
                taskID = int(attributes['taskID'])
                if all_tasks[taskID].end():
                    # increment count only if task completes the first time
                    # if False, we received a duplicate message
                    total_msg_received += 1
                #     print("Received taskID = {} ({} of {})".format(
                #         taskID, total_msg_received, num_tasks))
                # else:
                #     print('REPEATED: taskID {} was already marked'.format(taskID))
            else:
                print('attributes missing!')

            ack_ids.append(received_message.ack_id)

        # Acknowledges the received messages so they will not be sent again.
        if ack_ids:
            subscriber.acknowledge(subscription_path, ack_ids)

        time.sleep(0.2)  # Wait 200 ms before polling again
        __MyFuncElapsedTime = time.time() - __MyFuncStartTime
        # print("{} s elapsed. Listening again.".format(__MyFuncElapsedTime))

    # if total_msg_received != num_tasks, function exit due to timeout
    if total_msg_received != num_tasks:
        print("WARNING: *** Receiver timed out! ***")
    print("Received {} messages out of {}. Done.".format(
        total_msg_received, num_tasks))


def main(num_tasks):
    """
    Main execution point of the program
    """

    for experiment_num in range(1, num_experiments + 1):
        print("Starting experiment {} of {} with {} tasks".format(
            experiment_num, num_experiments, num_tasks))
        # Create all tasks and start them
        all_tasks = createTasks(num_tasks)
        for task in all_tasks:     # Start all tasks
            task.start()
        print("Published {} taskIDs".format(num_tasks))

        receiveResults(all_tasks)  # Receive message from Pub/Sub subscription

        print("Waiting {} seconds\n\n".format(time_between_exp))
        time.sleep(time_between_exp)  # sleep between experiments


if __name__ == "__main__":
    if(len(sys.argv) != 2):
        print("usage: python client.py  <num_tasks>")
        print("    num_tasks: Number of concurrent Cloud Function calls")
        sys.exit()

    num_tasks = int(sys.argv[1])
    main(num_tasks)

在您的云函数中,在这一行中:

publisher.publish(topic_path, data=data, taskID=taskID)

你不是在等待 publisher.publish returns 的未来。这意味着您不能保证当您从 gcf_run 函数结束时发布到主题上确实发生了,但是 TRIGGER 主题云函数订阅上的消息无论如何都会被确认。

相反,要等到云功能终止发布,这应该是:

publisher.publish(topic_path, data=data, taskID=taskID).result()

您还应避免在每次函数调用时启动和拆除发布者客户端,而是将客户端作为全局变量。