如何在 C++ 中使用 MPI 对简单循环进行负载平衡
How to load balance a simple loop using MPI in C++
我正在编写一些计算量大但可并行化程度高的代码。一旦并行化,我打算 运行 它在 HPC 上,但是要将 运行 时间缩短到一周以内,问题需要随着处理器的数量很好地扩展。
下面是我试图实现的一个简单而可笑的例子,它足够简洁来编译和演示我的问题;
#include <iostream>
#include <ctime>
#include "mpi.h"
using namespace std;
double int_theta(double E){
double result = 0;
for (int k = 0; k < 20000; k++)
result += E*k;
return result;
}
int main()
{
int n = 3500000;
int counter = 0;
time_t timer;
int start_time = time(&timer);
int myid, numprocs;
int k;
double integrate, result;
double end = 0.5;
double start = -2.;
double E;
double factor = (end - start)/(n*1.);
integrate = 0;
MPI_Init(NULL,NULL);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
for (k = myid; k<n+1; k+=numprocs){
E = start + k*(end-start)/n;
if (( k == 0 ) || (k == n))
integrate += 0.5*factor*int_theta(E);
else
integrate += factor*int_theta(E);
counter++;
}
cout<<"process "<<myid<<" took "<<time(&timer)-start_time<<"s"<<endl;
cout<<"process "<<myid<<" performed "<<counter<<" computations"<<endl;
MPI_Reduce(&integrate, &result, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if (myid == 0)
cout<<result<<endl;
MPI_Finalize();
return 0;
}
我在我的四核笔记本电脑上用
编译了这个问题
mpiicc test.cpp -std=c++14 -O3 -DMKL_LP64 -lmkl_intel_lp64 - lmkl_sequential -lmkl_core -lpthread -lm -ldl
我得到以下输出;
$ mpirun -np 4 ./a.out
process 3 took 14s
process 3 performed 875000 computations
process 1 took 15s
process 1 performed 875000 computations
process 2 took 16s
process 2 performed 875000 computations
process 0 took 16s
process 0 performed 875001 computations
-3.74981e+08
$ mpirun -np 3 ./a.out
process 2 took 11s
process 2 performed 1166667 computations
process 1 took 20s
process 1 performed 1166667 computations
process 0 took 20s
process 0 performed 1166667 computations
-3.74981e+08
$ mpirun -np 2 ./a.out
process 0 took 16s
process 0 performed 1750001 computations
process 1 took 16s
process 1 performed 1750000 computations
-3.74981e+08
在我看来,一定有什么我不知道的障碍。我使用 2 个处理器比 3 个处理器获得更好的性能。有人可以提供任何建议吗?谢谢
如果我阅读了 lscpu
你给出的正确输出(例如在 https://unix.stackexchange.com/a/218081 的帮助下),你有 4 个逻辑 CPU,但只有 2 个硬件核心( 1 个插槽 x 每个插槽 2 个内核)。
使用 cat /proc/cpuinfo
您可以找到 CPU 的品牌和型号,也许可以了解更多信息。
四个逻辑 CPU 可能是由超线程产生的,这意味着一些硬件资源(例如 FPU 单元,但我不是这方面的专家)在两个内核之间共享。因此,我不希望在两个进程之外有任何好的并行扩展。
对于可伸缩性测试,您应该尝试使用一台可能有 6 个或更多硬件内核的机器来获得更好的估计。
通过查看您的代码,我希望可以完美扩展到任意数量的内核 - 至少只要您不包括进程启动和最终 MPI_Reduce 所需的时间。随着涉及的进程越来越多,这些速度肯定会变慢。
我正在编写一些计算量大但可并行化程度高的代码。一旦并行化,我打算 运行 它在 HPC 上,但是要将 运行 时间缩短到一周以内,问题需要随着处理器的数量很好地扩展。
下面是我试图实现的一个简单而可笑的例子,它足够简洁来编译和演示我的问题;
#include <iostream>
#include <ctime>
#include "mpi.h"
using namespace std;
double int_theta(double E){
double result = 0;
for (int k = 0; k < 20000; k++)
result += E*k;
return result;
}
int main()
{
int n = 3500000;
int counter = 0;
time_t timer;
int start_time = time(&timer);
int myid, numprocs;
int k;
double integrate, result;
double end = 0.5;
double start = -2.;
double E;
double factor = (end - start)/(n*1.);
integrate = 0;
MPI_Init(NULL,NULL);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
for (k = myid; k<n+1; k+=numprocs){
E = start + k*(end-start)/n;
if (( k == 0 ) || (k == n))
integrate += 0.5*factor*int_theta(E);
else
integrate += factor*int_theta(E);
counter++;
}
cout<<"process "<<myid<<" took "<<time(&timer)-start_time<<"s"<<endl;
cout<<"process "<<myid<<" performed "<<counter<<" computations"<<endl;
MPI_Reduce(&integrate, &result, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if (myid == 0)
cout<<result<<endl;
MPI_Finalize();
return 0;
}
我在我的四核笔记本电脑上用
编译了这个问题mpiicc test.cpp -std=c++14 -O3 -DMKL_LP64 -lmkl_intel_lp64 - lmkl_sequential -lmkl_core -lpthread -lm -ldl
我得到以下输出;
$ mpirun -np 4 ./a.out
process 3 took 14s
process 3 performed 875000 computations
process 1 took 15s
process 1 performed 875000 computations
process 2 took 16s
process 2 performed 875000 computations
process 0 took 16s
process 0 performed 875001 computations
-3.74981e+08
$ mpirun -np 3 ./a.out
process 2 took 11s
process 2 performed 1166667 computations
process 1 took 20s
process 1 performed 1166667 computations
process 0 took 20s
process 0 performed 1166667 computations
-3.74981e+08
$ mpirun -np 2 ./a.out
process 0 took 16s
process 0 performed 1750001 computations
process 1 took 16s
process 1 performed 1750000 computations
-3.74981e+08
在我看来,一定有什么我不知道的障碍。我使用 2 个处理器比 3 个处理器获得更好的性能。有人可以提供任何建议吗?谢谢
如果我阅读了 lscpu
你给出的正确输出(例如在 https://unix.stackexchange.com/a/218081 的帮助下),你有 4 个逻辑 CPU,但只有 2 个硬件核心( 1 个插槽 x 每个插槽 2 个内核)。
使用 cat /proc/cpuinfo
您可以找到 CPU 的品牌和型号,也许可以了解更多信息。
四个逻辑 CPU 可能是由超线程产生的,这意味着一些硬件资源(例如 FPU 单元,但我不是这方面的专家)在两个内核之间共享。因此,我不希望在两个进程之外有任何好的并行扩展。
对于可伸缩性测试,您应该尝试使用一台可能有 6 个或更多硬件内核的机器来获得更好的估计。
通过查看您的代码,我希望可以完美扩展到任意数量的内核 - 至少只要您不包括进程启动和最终 MPI_Reduce 所需的时间。随着涉及的进程越来越多,这些速度肯定会变慢。