如何在 pandas 中为 columns 参数进行多列转换

how to dcast in pandas with more than one columns for columns argument

我有以下dataframe

import pandas as pd
df = pd.DataFrame({'id':[1,2,3,4,5,6], 'id_2':[6,5,4,3,2,1],
'col_1':['A','A','A','B','B','B'],
'col_2':['X','Z','X','Z','X','Z'],
'value':[10,20,30,40,50,60]})

而且我想要dcast它,所以我使用

df= df.pivot_table(index=['id','id_2'], columns=['col_1', 'col_2'],aggfunc=lambda x: x)

不知道怎么dropleveldf.columns改成A_X,A_Z,B_X,B_Zmulti-index 让我很困惑

有什么想法吗?

更新

我想以

结尾
import numpy as np

df=pd.DataFrame({'id':[1,2,3,4,5,6], 'id_2':[6,5,4,3,2,1],
'A_X':[10,np.nan,30,np.nan,np.nan,np.nan],
'A_Z':[np.nan,20,np.nan,np.nan,np.nan,np.nan],
'B_X':[np.nan,np.nan,np.nan,np.nan,50,np.nan],
'B_Z':[np.nan,np.nan,np.nan,40,np.nan,60]})

您需要从 Multiindex 中删除顶级 value - 通过 Index.droplevel 或使用列表理解:

print (df.columns)
MultiIndex(levels=[['value'], ['A', 'B'], ['X', 'Z']],
           codes=[[0, 0, 0, 0], [0, 0, 1, 1], [0, 1, 0, 1]],
           names=[None, 'col_1', 'col_2'])

df.columns = df.columns.droplevel(0).map('_'.join)

或者:

df.columns = [f'{b}_{c}' for a,b,c in df.columns]

df = df.reset_index()
print (df)

   id  id_2   A_X   A_Z   B_X   B_Z
0   1     6  10.0   NaN   NaN   NaN
1   2     5   NaN  20.0   NaN   NaN
2   3     4  30.0   NaN   NaN   NaN
3   4     3   NaN   NaN   NaN  40.0
4   5     2   NaN   NaN  50.0   NaN
5   6     1   NaN   NaN   NaN  60.0

另一个解决方案是在 pivot_table 中指定 value 参数:

df= df.pivot_table(index=['id','id_2'], columns=['col_1', 'col_2'], values='value')

print (df.columns)
MultiIndex(levels=[['A', 'B'], ['X', 'Z']],
           codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
           names=['col_1', 'col_2'])

df.columns = df.columns.map('_'.join)
df = df.reset_index()
print (df)

   id  id_2   A_X   A_Z   B_X   B_Z
0   1     6  10.0   NaN   NaN   NaN
1   2     5   NaN  20.0   NaN   NaN
2   3     4  30.0   NaN   NaN   NaN
3   4     3   NaN   NaN   NaN  40.0
4   5     2   NaN   NaN  50.0   NaN
5   6     1   NaN   NaN   NaN  60.0
df2 = (df.pivot_table(index=['id','id_2'], columns=['col_1', 'col_2'],
                         values='value')
            .reset_index()
        )

输出:

    id  id_2    A   B
                X   Z   X   Z
0   1   6   10.0    NaN NaN  NaN
1   2   5   NaN    20.0 NaN  NaN
2   3   4   30.0    NaN NaN  NaN
3   4   3   NaN    NaN  NaN  40.0
4   5   2   NaN    NaN  50.0 NaN
5   6   1   NaN    NaN  NaN  60.0