Generator 只进行 12 次迭代——无论批量大小
Generator does only 12 iterations - no matter batch size
我有以下数据生成器。它有效并且 returns 预期数据。除了无论我将 epochs 或 batchsize 设置为什么,它只进行 12 次迭代然后给出错误(见下文)
我试过更改轮数和批量大小。
# initialize the number of epochs to train for and batch size
NUM_EPOCHS = 10 #100
BS = 32 #64 #32
NUM_TRAIN_IMAGES = len(train_uxo_scrap)
NUM_TEST_IMAGES = len(test_uxo_scrap)
def datagenerator(imgfns, imglabels, batchsize, mode="train", class_mode='binary'):
cnt=0
while True:
images = []
labels = []
#cnt=0
while len(images) < batchsize and cnt < len(imgfns):
images.append(imgfns[cnt])
labels.append(imglabels[cnt])
cnt=cnt+1
print(images)
print(labels)
print('********** cnt = ', cnt)
yield images, labels
train_gen = datagenerator(train_uxo_scrap, train_uxo_scrap_labels, batchsize=BS, class_mode='binary')
valid_gen = datagenerator(test_uxo_scrap, test_uxo_scrap_labels, batchsize=BS, class_mode='binary')
# train the network
H = model.fit_generator(
train_gen,
steps_per_epoch=NUM_TRAIN_IMAGES // BS,
validation_data=valid_gen,
validation_steps=NUM_TEST_IMAGES // BS,
epochs=NUM_EPOCHS)
我希望代码在每次迭代中经历 10 个时期,每个迭代有 32 个样本。我每次迭代获得 32 个样本,但我在第一个时期只获得 12 次迭代,然后出现以下错误。无论 batchsize 或 epochs 设置多少,都会发生这种情况。
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-83-26f81894773d> in <module>()
5 validation_data=valid_gen,
6 validation_steps=NUM_TEST_IMAGES // BS,
----> 7 epochs=NUM_EPOCHS)
~\AppData\Local\Continuum\anaconda3\envs\dltf1\lib\site-packages\tensorflow\python\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
1424 use_multiprocessing=use_multiprocessing,
1425 shuffle=shuffle,
-> 1426 initial_epoch=initial_epoch)
1427
1428 def evaluate_generator(self,
~\AppData\Local\Continuum\anaconda3\envs\dltf1\lib\site-packages\tensorflow\python\keras\engine\training_generator.py in model_iteration(model, data, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch, mode, batch_size, **kwargs)
182 # `batch_size` used for validation data if validation
183 # data is NumPy/EagerTensors.
--> 184 batch_size = int(nest.flatten(batch_data)[0].shape[0])
185
186 # Callbacks batch begin.
IndexError: tuple index out of range
这是打印输出的示例:
['C:\Users\jfhauris\Documents\xtemp\ML GEO\MLGeoCode\FormattedDataStore\uxo_48-81\JBCC_Norm_Formatted_48-81_#615.npy', ..., 'C:\Users\jfhauris\Documents\xtemp\ML GEO\MLGeoCode\FormattedDataStore\scrap_48-81\JBCC_Norm_Formatted_48-81_#224.npy']
[1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0]
********** cnt = 352
['C:\Users\jfhauris\Documents\xtemp\ML GEO\MLGeoCode\FormattedDataStore\uxo_48-81\JBCC_Norm_Formatted_48-81_#532.npy', 'C:\Users\jfhauris\Documents\xtemp\ML GEO\MLGeoCode\FormattedDataStore\uxo_48-81\JBCC_Norm_Formatted_48-81_#953.npy',
...
, 'C:\Users\jfhauris\Documents\xtemp\ML GEO\MLGeoCode\FormattedDataStore\scrap_48-81\JBCC_Norm_Formatted_48-81_#1081.npy', 'C:\Users\jfhauris\Documents\xtemp\ML GEO\MLGeoCode\FormattedDataStore\scrap_48-81\JBCC_Norm_Formatted_48-81_#1050.npy']
[1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0]
********** cnt = 384
看看这是否有效:
def datagenerator(imgfns, imglabels, batchsize, mode="train", class_mode='binary'):
while True:
start = 0
end = batchsize
while start < len(imgfns):
x = imgfns[start:end]
y = imglabels[start:end]
yield x, y
start += batchsize
end += batchsize
假设 imgfns, imglabels
是 numpy 数组。
我有以下数据生成器。它有效并且 returns 预期数据。除了无论我将 epochs 或 batchsize 设置为什么,它只进行 12 次迭代然后给出错误(见下文)
我试过更改轮数和批量大小。
# initialize the number of epochs to train for and batch size
NUM_EPOCHS = 10 #100
BS = 32 #64 #32
NUM_TRAIN_IMAGES = len(train_uxo_scrap)
NUM_TEST_IMAGES = len(test_uxo_scrap)
def datagenerator(imgfns, imglabels, batchsize, mode="train", class_mode='binary'):
cnt=0
while True:
images = []
labels = []
#cnt=0
while len(images) < batchsize and cnt < len(imgfns):
images.append(imgfns[cnt])
labels.append(imglabels[cnt])
cnt=cnt+1
print(images)
print(labels)
print('********** cnt = ', cnt)
yield images, labels
train_gen = datagenerator(train_uxo_scrap, train_uxo_scrap_labels, batchsize=BS, class_mode='binary')
valid_gen = datagenerator(test_uxo_scrap, test_uxo_scrap_labels, batchsize=BS, class_mode='binary')
# train the network
H = model.fit_generator(
train_gen,
steps_per_epoch=NUM_TRAIN_IMAGES // BS,
validation_data=valid_gen,
validation_steps=NUM_TEST_IMAGES // BS,
epochs=NUM_EPOCHS)
我希望代码在每次迭代中经历 10 个时期,每个迭代有 32 个样本。我每次迭代获得 32 个样本,但我在第一个时期只获得 12 次迭代,然后出现以下错误。无论 batchsize 或 epochs 设置多少,都会发生这种情况。
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-83-26f81894773d> in <module>()
5 validation_data=valid_gen,
6 validation_steps=NUM_TEST_IMAGES // BS,
----> 7 epochs=NUM_EPOCHS)
~\AppData\Local\Continuum\anaconda3\envs\dltf1\lib\site-packages\tensorflow\python\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
1424 use_multiprocessing=use_multiprocessing,
1425 shuffle=shuffle,
-> 1426 initial_epoch=initial_epoch)
1427
1428 def evaluate_generator(self,
~\AppData\Local\Continuum\anaconda3\envs\dltf1\lib\site-packages\tensorflow\python\keras\engine\training_generator.py in model_iteration(model, data, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch, mode, batch_size, **kwargs)
182 # `batch_size` used for validation data if validation
183 # data is NumPy/EagerTensors.
--> 184 batch_size = int(nest.flatten(batch_data)[0].shape[0])
185
186 # Callbacks batch begin.
IndexError: tuple index out of range
这是打印输出的示例:
['C:\Users\jfhauris\Documents\xtemp\ML GEO\MLGeoCode\FormattedDataStore\uxo_48-81\JBCC_Norm_Formatted_48-81_#615.npy', ..., 'C:\Users\jfhauris\Documents\xtemp\ML GEO\MLGeoCode\FormattedDataStore\scrap_48-81\JBCC_Norm_Formatted_48-81_#224.npy']
[1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0]
********** cnt = 352
['C:\Users\jfhauris\Documents\xtemp\ML GEO\MLGeoCode\FormattedDataStore\uxo_48-81\JBCC_Norm_Formatted_48-81_#532.npy', 'C:\Users\jfhauris\Documents\xtemp\ML GEO\MLGeoCode\FormattedDataStore\uxo_48-81\JBCC_Norm_Formatted_48-81_#953.npy',
...
, 'C:\Users\jfhauris\Documents\xtemp\ML GEO\MLGeoCode\FormattedDataStore\scrap_48-81\JBCC_Norm_Formatted_48-81_#1081.npy', 'C:\Users\jfhauris\Documents\xtemp\ML GEO\MLGeoCode\FormattedDataStore\scrap_48-81\JBCC_Norm_Formatted_48-81_#1050.npy']
[1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0]
********** cnt = 384
看看这是否有效:
def datagenerator(imgfns, imglabels, batchsize, mode="train", class_mode='binary'):
while True:
start = 0
end = batchsize
while start < len(imgfns):
x = imgfns[start:end]
y = imglabels[start:end]
yield x, y
start += batchsize
end += batchsize
假设 imgfns, imglabels
是 numpy 数组。