按组为 FALSE 和 NA 之间的 TRUE 运行创建计数器

Create counter for runs of TRUE among FALSE and NA, by group

我有点头疼。

我有一个 data.frame,其中 TRUE 的 运行 被一个或多个 FALSENA 的 运行 分隔:

   group criterium
1      A        NA
2      A      TRUE
3      A      TRUE
4      A      TRUE
5      A     FALSE
6      A     FALSE
7      A      TRUE
8      A      TRUE
9      A     FALSE
10     A      TRUE
11     A      TRUE
12     A      TRUE
13     B        NA
14     B     FALSE
15     B      TRUE
16     B      TRUE
17     B      TRUE
18     B     FALSE

structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A", 
"B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE, 
FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE, 
TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA, 
-18L))

我想在 criterium 列中按升序排列 TRUE 的组,而忽略 FALSENA。目标是在每个 group.

中为 TRUE 中的每个 运行 拥有一个唯一的连续 ID

所以结果应该是这样的:

    group criterium goal
1      A        NA   NA
2      A      TRUE    1
3      A      TRUE    1
4      A      TRUE    1
5      A     FALSE   NA
6      A     FALSE   NA
7      A      TRUE    2
8      A      TRUE    2
9      A     FALSE   NA
10     A      TRUE    3
11     A      TRUE    3
12     A      TRUE    3
13     B        NA   NA
14     B     FALSE   NA
15     B      TRUE    1
16     B      TRUE    1
17     B      TRUE    1
18     B     FALSE   NA

我确定有一种相对简单的方法可以做到这一点,但我想不出一个。我尝试了 dense_rank()dplyr 的其他 window 函数,但无济于事。

也许我把这个复杂化了,但是 dplyr 的一种方法是

library(dplyr)

df %>%
  mutate(temp = replace(criterium, is.na(criterium), FALSE), 
         temp1 = cumsum(!temp)) %>%
   group_by(temp1) %>%
   mutate(goal =  +(row_number() == which.max(temp) & any(temp))) %>%
   group_by(group) %>%
   mutate(goal = ifelse(temp, cumsum(goal), NA)) %>%
   select(-temp, -temp1)

#  group criterium  goal
#   <fct> <lgl>     <int>
# 1 A     NA           NA
# 2 A     TRUE          1
# 3 A     TRUE          1
# 4 A     TRUE          1
# 5 A     FALSE        NA
# 6 A     FALSE        NA
# 7 A     TRUE          2
# 8 A     TRUE          2
# 9 A     FALSE        NA
#10 A     TRUE          3
#11 A     TRUE          3
#12 A     TRUE          3
#13 B     NA           NA
#14 B     FALSE        NA
#15 B     TRUE          1
#16 B     TRUE          1
#17 B     TRUE          1
#18 B     FALSE        NA

我们首先在criterium列中replace NAs到FALSE,并对其取反(temp1)。我们 group_by temp1 并将 1 分配给组中每个第一个 TRUE 值。最后按 group 分组,我们对 TRUE 值或 return NAFALSENA 值进行累加和。

data.table 选项使用 rle

library(data.table)
DT <- as.data.table(dat)
DT[, goal := {
  r <- rle(replace(criterium, is.na(criterium), FALSE))
  r$values <- with(r, cumsum(values) * values)          
  out <- inverse.rle(r)                                 
  replace(out, out == 0, NA)
}, by = group]
DT
#    group criterium goal
# 1:     A        NA   NA
# 2:     A      TRUE    1
# 3:     A      TRUE    1
# 4:     A      TRUE    1
# 5:     A     FALSE   NA
# 6:     A     FALSE   NA
# 7:     A      TRUE    2
# 8:     A      TRUE    2
# 9:     A     FALSE   NA
#10:     A      TRUE    3
#11:     A      TRUE    3
#12:     A      TRUE    3
#13:     B        NA   NA
#14:     B     FALSE   NA
#15:     B      TRUE    1
#16:     B      TRUE    1
#17:     B      TRUE    1
#18:     B     FALSE   NA

循序渐进

当我们调用r <- rle(replace(criterium, is.na(criterium), FALSE))时,我们得到了classrle

的一个对象
r
#Run Length Encoding
#  lengths: int [1:9] 1 3 2 2 1 3 2 3 1
#  values : logi [1:9] FALSE TRUE FALSE TRUE FALSE TRUE ...

我们按以下方式操作 values 组件

r$values <- with(r, cumsum(values) * values)
r
#Run Length Encoding
#  lengths: int [1:9] 1 3 2 2 1 3 2 3 1
#  values : int [1:9] 0 1 0 2 0 3 0 4 0 

也就是我们将TRUEs替换为values的累加和,并将FALSEs设置为0。现在 inverse.rle returns 一个向量,其中 values 将重复 lenghts

out <- inverse.rle(r)
out
# [1] 0 1 1 1 0 0 2 2 0 3 3 3 0 0 4 4 4 0 

这几乎是 OP 想要的,但我们需要将 0 替换为 NA

replace(out, out == 0, NA)

这是为每个 group 完成的。

数据

dat <- structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A", 
"B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE, 
FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE, 
TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA, 
-18L))

纯 Base R 解决方案,我们可以通过 rle 创建自定义函数,并按组使用它,即

f1 <- function(x) {
    x[is.na(x)] <- FALSE
    rle1 <- rle(x)
    y <- rle1$values
    rle1$values[!y] <- 0
    rle1$values[y] <- cumsum(rle1$values[y])
    return(inverse.rle(rle1))
}


do.call(rbind, 
     lapply(split(df, df$group), function(i){i$goal <- f1(i$criterium); 
                                             i$goal <- replace(i$goal, is.na(i$criterium)|!i$criterium, NA); 
    i}))

当然,如果你愿意,可以通过dplyr申请,即

library(dplyr)

df %>% 
 group_by(group) %>% 
 mutate(goal = f1(criterium), 
        goal = replace(goal, is.na(criterium)|!criterium, NA))

这给出了,

# A tibble: 18 x 3
# Groups:   group [2]
   group criterium  goal
   <fct> <lgl>     <dbl>
 1 A     NA           NA
 2 A     TRUE          1
 3 A     TRUE          1
 4 A     TRUE          1
 5 A     FALSE        NA
 6 A     FALSE        NA
 7 A     TRUE          2
 8 A     TRUE          2
 9 A     FALSE        NA
10 A     TRUE          3
11 A     TRUE          3
12 A     TRUE          3
13 B     NA           NA
14 B     FALSE        NA
15 B     TRUE          1
16 B     TRUE          1
17 B     TRUE          1
18 B     FALSE        NA

另一个data.table方法:

library(data.table)
setDT(dt)
dt[, cr := rleid(criterium)][
    (criterium), goal := rleid(cr), by=.(group)]