为什么学习率不变?

Why learning rate does not change?

我使用 Tensorflow 对象检测 API 教程 https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/index.html 来训练我的自定义模型。按照此说明进行操作,我使用官方 GitHub 存储库中的配置文件和脚本 train.py 进行培训。我在配置文件中看到,学习率应该是自适应的。可以在这行中看到:

train_config: {
  batch_size: 24
  optimizer {
    rms_prop_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.004
          decay_steps: 800720
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    }
  }

然后,我在训练期间使用了 TensorBoard,它告诉我,每个训练步骤的学习率都是恒定的。为什么会这样?可能 TensorBoard 只看到学习率的初始值,而优化器会即时计算它的实际值?

我从文档中了解到计算衰减率的公式是:

decayed_learning_rate = learning_rate *
                    decay_rate ^ (global_step / decay_steps)

在此global_step需要按以下方式给出:

[...] requires a global_step value to compute the decayed learning rate.
You can just pass a TensorFlow variable that you increment at each training step.

所以也许您只需要传递那个 global_step 参数就可以使速率有效衰减?

在API中,优化器是在这个file. And this中内置的,是针对rms_prop_optimizer的行。为了构建优化器学习率,该函数调用了一个函数 _create_learning_rate,该函数最终调用了 object_detection/utils 下的 learning_schedules。以下是您的示例中学习率的安排方式。

def exponential_decay_with_burnin(global_step,
                                  learning_rate_base,
                                  learning_rate_decay_steps,
                                  learning_rate_decay_factor,
                                  burnin_learning_rate=0.0,
                                  burnin_steps=0,
                                  min_learning_rate=0.0,
                                  staircase=True):
  """Exponential decay schedule with burn-in period.
  In this schedule, learning rate is fixed at burnin_learning_rate
  for a fixed period, before transitioning to a regular exponential
  decay schedule.
  Args:
    global_step: int tensor representing global step.
    learning_rate_base: base learning rate.
    learning_rate_decay_steps: steps to take between decaying the learning rate.
      Note that this includes the number of burn-in steps.
    learning_rate_decay_factor: multiplicative factor by which to decay
      learning rate.
    burnin_learning_rate: initial learning rate during burn-in period.  If
      0.0 (which is the default), then the burn-in learning rate is simply
      set to learning_rate_base.
    burnin_steps: number of steps to use burnin learning rate.
    min_learning_rate: the minimum learning rate.
    staircase: whether use staircase decay.
  Returns:
    a (scalar) float tensor representing learning rate
  """
  if burnin_learning_rate == 0:
    burnin_learning_rate = learning_rate_base
  post_burnin_learning_rate = tf.train.exponential_decay(
      learning_rate_base,
      global_step - burnin_steps,
      learning_rate_decay_steps,
      learning_rate_decay_factor,
      staircase=staircase)
  return tf.maximum(tf.where(
      tf.less(tf.cast(global_step, tf.int32), tf.constant(burnin_steps)),
      tf.constant(burnin_learning_rate),
      post_burnin_learning_rate), min_learning_rate, name='learning_rate')

这是学习率衰减图。即使在 100 000 步之后,衰减实际上很小。