如何使用 tf.saved_model API 恢复 tf.data.Dataset() 中的悬挂 tf.py_func?

How to restore dangling tf.py_func within the tf.data.Dataset() with tf.saved_model API?

在研究了使用 saved_model API 时恢复 tf.py_func() 的方法后,除了 tensorflow 中的记录外,我找不到其他信息:

The operation must run in the same address space as the Python program that calls tf.py_func(). If you are using distributed TensorFlow, you must run a tf.train.Server in the same process as the program that calls tf.py_func() and you must pin the created operation to a device in that server (e.g. using with tf.device():)

两个 save/load 片段有助于说明情况。

保存部分:

def wrapper(x, y):
    with tf.name_scope('wrapper'):
        return tf.py_func(Copy, [x, y], [tf.float32, tf.float32])

def Copy(x, y):
    return x, y

x_ph = tf.placeholder(tf.float32, [None], 'x_ph')
y_ph = tf.placeholder(tf.float32, [None], 'y_ph')

with tf.name_scope('input'):
    ds = tf.data.Dataset.from_tensor_slices((x_ph, y_ph))
    ds = ds.map(wrapper)
    ds = ds.batch(1)
    it = tf.data.Iterator.from_structure(ds.output_types, ds.output_shapes)
    it_init_op = it.make_initializer(ds, name='it_init_op')

x_it, y_it = it.get_next()

# Simple operation
with tf.name_scope('add'):
    res = tf.add(x_it, y_it)

with tf.Session() as sess:
    sess.run([tf.global_variables_initializer(), it_init_op], feed_dict={y_ph: [10] * 10, x_ph: [i for i in range(10)]})
    sess.run([res])
    tf.saved_model.simple_save(sess, './dummy/test', {'x_ph': x_ph, 'y_ph': y_ph}, {'res': res})

加载部分:

graph = tf.Graph()
graph.as_default()
with tf.Session(graph=graph) as sess:
    tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], './dummy/test')

    res = graph.get_tensor_by_name('add/Add:0')
    it_init_op = graph.get_operation_by_name('input/it_init_op')
    x_ph = graph.get_tensor_by_name('x_ph:0')
    y_ph = graph.get_tensor_by_name('y_ph:0')
    sess.run([it_init_op], feed_dict={x_ph: [5] * 5, y_ph: [i for i in range(5)]})

    for _ in range(5):
        sess.run([res])

错误:

ValueError: callback pyfunc_0 is not found

众所周知,tf.py_func() 包装的函数不会与模型一起保存。有没有人有办法通过使用 tf 文档应用 tf.train.Server

给出的小提示来恢复它

只要没有答案,我会建议我的,which contour the pb 而不是解决它。苦苦挣扎了半天,终于通过修剪把它给忽略了。然后用占位符更简单的方式将新的 input/ouput 嫁接给它。此外,此 py_func 在 TF2.0.

中已弃用