如何使用 tapply 对因子的每个级别执行 t 检验

How to perform t-tests for each level of a factor with tapply

我的数据和代码是这样的:

my_vector <- rnorm(150)
my_factor1 <- gl(3,50)
my_factor2 <- gl(2,75)

tapply(my_vector, my_factor1, function(x)
  t.test(my_vector~my_factor2, paired=T))

我想对 my_factor1 的每个水平进行单独的 t 检验,以测试 my_factor2 两个水平的 my_vector。

但是,对于我的代码,t 检验并未拆分 my_factor1 的级别,并且每个级别的结果都相等,因为 my_vector 完全包含在每个 t.test 中.

这是我的代码的输出:

$`1`

Paired t-test

data:  my_vector by my_factor2
t = 0.2448, df = 74, p-value = 0.8073
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.2866512  0.3669667
sample estimates:
mean of the differences 
         0.04015775 


$`2`

Paired t-test

data:  my_vector by my_factor2
t = 0.2448, df = 74, p-value = 0.8073
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.2866512  0.3669667
sample estimates:
mean of the differences 
         0.04015775 


$`3`

Paired t-test

data:  my_vector by my_factor2
t = 0.2448, df = 74, p-value = 0.8073
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.2866512  0.3669667
sample estimates:
mean of the differences 
         0.04015775 

我错过了什么或做错了什么?

你的例子有点问题,因为如果你设置:

df <- data.frame(my_vector = rnorm(150),
                 my_factor1 = gl(3,50),
                 my_factor2 = gl(2,75)
                )

my_factor1 = 1 或 3 时,您将只有一个唯一值 my_factor2,因为您的重复重叠方式。参见 ?gl。也一样:

df <- data.frame(my_vector = rnorm(150),
                 my_factor1 = gl(3,1,150),
                 my_factor2 = gl(2,1,150)
                )
with(df,
       by(df, my_factor1,
          function(x) t.test(my_vector ~ my_factor2, data=x)
       )
     )

这似乎产生了您想要的输出。

作为旁注——考虑对多重比较进行更正:https://stats.stackexchange.com/questions/16779/when-is-multiple-comparison-correction-necessary