计算大量变量之间的差异

Calculate difference beetwen a big number of variables

我正在尝试计算不同列之间的差异,我是用一个循环来完成的,但我知道这不是一个优雅的解决方案,也不是 R 中最好的解决方案(效率不高)而且我的结果有重复的结果而不是逻辑运算(disp-disp 或 hp_disp 和 disp_hp)。

我的真实数据有Na,我试着模拟了一下。我的目标是尝试改进我的命令以获得与下面相同的 table。

我的命令示例如下:

 names(mtcars)

 mtcars$mpg[mtcars$am==1]=NA

 vars1= c("mpg","cyl","disp","hp")
 vars2= c("mpg","cyl","disp","hp")

 df=data.frame()
 df_all=data.frame()
 df_all=length(mtcars)

 for(i in vars1){
        for(k in vars2) { 

    df= mtcars[[i]]-mtcars[[k]]
    df_all=cbind(df_all, df)
    length =ncol(df_all)
    colnames(df_all)[length]= paste0(i,"_",k)
    }
    }

head(df_all)

          disp_mpg disp_cyl disp_disp disp_hp hp_mpg hp_cyl hp_disp hp_hp
    [1,]       NA      154         0      50     NA    104     -50     0
    [2,]       NA      154         0      50     NA    104     -50     0
    [3,]       NA      104         0      15     NA     89     -15     0
    [4,]    236.6      252         0     148   88.6    104    -148     0
    [5,]    341.3      352         0     185  156.3    167    -185     0
    [6,]    206.9      219         0     120   86.9     99    -120     0

这是一种方法,使用 data.table 库

library(data.table)

vars = c("mpg","cyl","disp","hp")

# create table of pairs to diff
to_diff <- CJ(vars, vars)[V1 < V2]

# calculate diffs
diffs <- 
  to_diff[, .(diff_val = mtcars[, V1] - mtcars[, V2]),
          by = .(cols = paste0(V1, '_minus_', V2))]

# number each row in each "cols" group
diffs[, rid := rowid(cols)]

# transform so that rid determines the row, cols determines the col, and
# the values are the value of diff_val
dcast(diffs, rid ~ cols, value.var = 'diff_val')

输出

# 
#     rid cyl_minus_disp cyl_minus_hp cyl_minus_mpg disp_minus_hp disp_minus_mpg hp_minus_mpg
#  1:   1         -154.0         -104         -15.0          50.0          139.0         89.0
#  2:   2         -154.0         -104         -15.0          50.0          139.0         89.0
#  3:   3         -104.0          -89         -18.8          15.0           85.2         70.2
#  4:   4         -252.0         -104         -15.4         148.0          236.6         88.6
#  5:   5         -352.0         -167         -10.7         185.0          341.3        156.3
#  6:   6         -219.0          -99         -12.1         120.0          206.9         86.9
#  7:   7         -352.0         -237          -6.3         115.0          345.7        230.7
#  8:   8         -142.7          -58         -20.4          84.7          122.3         37.6
#  9:   9         -136.8          -91         -18.8          45.8          118.0         72.2
# 10:  10         -161.6         -117         -13.2          44.6          148.4        103.8
# 11:  11         -161.6         -117         -11.8          44.6          149.8        105.2
# 12:  12         -267.8         -172          -8.4          95.8          259.4        163.6
# 13:  13         -267.8         -172          -9.3          95.8          258.5        162.7
# 14:  14         -267.8         -172          -7.2          95.8          260.6        164.8
# 15:  15         -464.0         -197          -2.4         267.0          461.6        194.6
# 16:  16         -452.0         -207          -2.4         245.0          449.6        204.6
# 17:  17         -432.0         -222          -6.7         210.0          425.3        215.3
# 18:  18          -74.7          -62         -28.4          12.7           46.3         33.6
# 19:  19          -71.7          -48         -26.4          23.7           45.3         21.6
# 20:  20          -67.1          -61         -29.9           6.1           37.2         31.1
# 21:  21         -116.1          -93         -17.5          23.1           98.6         75.5
# 22:  22         -310.0         -142          -7.5         168.0          302.5        134.5
# 23:  23         -296.0         -142          -7.2         154.0          288.8        134.8
# 24:  24         -342.0         -237          -5.3         105.0          336.7        231.7
# 25:  25         -392.0         -167         -11.2         225.0          380.8        155.8
# 26:  26          -75.0          -62         -23.3          13.0           51.7         38.7
# 27:  27         -116.3          -87         -22.0          29.3           94.3         65.0
# 28:  28          -91.1         -109         -26.4         -17.9           64.7         82.6
# 29:  29         -343.0         -256          -7.8          87.0          335.2        248.2
# 30:  30         -139.0         -169         -13.7         -30.0          125.3        155.3
# 31:  31         -293.0         -327          -7.0         -34.0          286.0        320.0
# 32:  32         -117.0         -105         -17.4          12.0           99.6         87.6
#     rid cyl_minus_disp cyl_minus_hp cyl_minus_mpg disp_minus_hp disp_minus_mpg hp_minus_mpg