使用 lpSolve 在整数规划中实现额外的约束变量

Implementing additional constraint variables in integer programming using lpSolve

我正在努力实现一个 lpSolve 解决方案来优化一个假设的日常梦幻棒球问题。我在应用最后一个约束时遇到问题:

例如,假设您有一个包含 1000 名球员的数据框,其中包含积分、成本、位置和团队,并且您正在尝试最大化平均积分:

library(tidyverse)
library(lpSolve)
set.seed(123)
df <- data_frame(avg_points = sample(5:45,1000, replace = T),
                 cost = sample(3:45,1000, replace = T),
                 position = sample(c("P","C","1B","2B","3B","SS","OF"),1000, replace = T),
                 team = sample(LETTERS,1000, replace = T)) %>% mutate(id = row_number())
head(df)

# A tibble: 6 x 5
#  avg_points  cost position team     id
#       <int> <int> <chr>    <chr> <int>
#1         17    13 2B       Y         1
#2         39    45 1B       P         2
#3         29    33 1B       C         3
#4         38    31 2B       V         4
#5         17    13 P        A         5
#6         10     6 SS       V         6

我已经使用以下代码实现了前 3 个约束,但我无法弄清楚如何实现花名册上最少数量的团队。我想我需要向模型添加额外的变量,但我不确定该怎么做。

#set the objective function (what we want to maximize)
obj <- df$avg_points 
# set the constraint rows.
con <- rbind(t(model.matrix(~ position + 0,df)), cost = df$cost, t(model.matrix(~ team + 0, df)) )

#set the constraint values
rhs <- c(1,1,1,1,3,2,1,  # 1. #exactly 3 outfielders 2 pitchers and 1 of everything else
         200, # 2. at a cost less than 200
         rep(6,26) # 3. max number from any team is 6
         ) 

#set the direction of the constraints
dir <- c("=","=","=","=","=","=","=","<=",rep("<=",26))

result <- lp("max",obj,con,dir,rhs,all.bin = TRUE)

如果有帮助,我正在尝试复制 This paper (with minor tweaks) which has corresponding julia code here

这可能是您问题的解决方案。

这是我用过的数据(和你的一样):

library(tidyverse)
library(lpSolve)
N <- 1000

set.seed(123)
df <- tibble(avg_points = sample(5:45,N, replace = T),
             cost = sample(3:45,N, replace = T),
             position = sample(c("P","C","1B","2B","3B","SS","OF"),N, replace = T),
             team = sample(LETTERS,N, replace = T)) %>% 
  mutate(id = row_number())

您想找到 x1...xn 最大化下面的 objective 函数:

x1 * average_points1 + x2 * average_points1 + ... + xn * average_pointsn

根据 lpSolve 的工作方式,您需要将每个 LHS 表示为总和 x1...xn 乘以您提供的向量。

由于你现在的变量无法表达球队的数量,你可以引入新的(我将它们称为y1..yn_teamsz1..zn_teams):

# number of teams:
n_teams = length(unique(df$team))

您的新 objective 函数(ys 和 zs 不会影响您的整体 objective 函数,因为常量设置为 0):

obj <- c(df$avg_points, rep(0, 2 * n_teams))

)

前 3 个约束相同,但为 yz 添加了常量:

c1 <- t(model.matrix(~ position + 0,df))
c1 <- cbind(c1, 
            matrix(0, ncol = 2 * n_teams, nrow = nrow(c1)))
c2 = df$cost
c2 <- c(c2, rep(0, 2 * n_teams))
c3 = t(model.matrix(~ team + 0, df))
c3 <- cbind(c3, matrix(0, ncol = 2 * n_teams, nrow = nrow(c3)))

因为你想要至少有3支球队,你会先用y来计算每支球队的球员人数:

此约束计算每支球队的球员人数。您将所选球队的所有球员相加,然后减去每个球队相应的 y 变量。这应该等于 0。(diag() 创建单位矩阵,此时我们不担心 z):

# should be x1...xn - y1...n = 0
c4_1 <- cbind(t(model.matrix(~team + 0, df)), # x
              -diag(n_teams), # y
              matrix(0, ncol = n_teams, nrow = n_teams) # z
              ) # == 0

由于每个 y 现在是一个团队中的球员人数,您现在可以确保 z 是具有此约束的二进制:

c4_2 <- cbind(t(model.matrix(~ team + 0, df)), # x1+...+xn ==
              -diag(n_teams), # - (y1+...+yn )
              diag(n_teams) # z binary
              ) # <= 1

这是确保至少选择 3 个团队的约束条件:

c4_3 <- c(rep(0, nrow(df) + n_teams), # x and y
          rep(1, n_teams) # z >= 3
          )

您需要确保

您可以使用 big-M 方法来创建约束,即:

或者,在更 lpSolve 友好的版本中:

在这种情况下,您可以使用 6 作为 M 的值,因为它是任何 y 可以采用的最大值:

c4_4 <- cbind(matrix(0, nrow = n_teams, ncol = nrow(df)),
              diag(n_teams),
              -diag(n_teams) * 6)

添加此约束以确保所有 x 都是二进制的:

#all x binary
c5 <- cbind(diag(nrow(df)), # x
            matrix(0, ncol = 2 * n_teams, nrow = nrow(df)) # y + z
            )

创建新的约束矩阵

con <- rbind(c1,
             c2,
             c3,
             c4_1,
             c4_2,
             c4_3,
             c4_4,
             c5)

#set the constraint values
rhs <- c(1,1,1,1,3,2,1,  # 1. #exactly 3 outfielders 2 pitchers and 1 of everything else
         200, # 2. at a cost less than 200
         rep(6, n_teams), # 3. max number from any team is 6
         rep(0, n_teams), # c4_1
         rep(1, n_teams), # c4_2
         3, # c4_3,
         rep(0, n_teams), #c4_4
         rep(1, nrow(df))# c5 binary
)

#set the direction of the constraints
dir <- c(rep("==", 7), # c1
         "<=", # c2
         rep("<=", n_teams), # c3
         rep('==', n_teams), # c4_1
         rep('<=', n_teams), # c4_2
         '>=', # c4_3
         rep('<=', n_teams), # c4_4 
         rep('<=', nrow(df)) # c5
         )

问题几乎相同,但我使用 all.int 而不是 all.bin 来确保计数适用于团队中的球员:

result <- lp("max",obj,con,dir,rhs,all.int = TRUE)
Success: the objective function is 450


roster <- df[result$solution[1:nrow(df)] == 1, ]
roster
# A tibble: 10 x 5
   avg_points  cost position team     id
        <int> <int> <chr>    <chr> <int>
 1         45    19 C        I        24
 2         45     5 P        X       126
 3         45    25 OF       N       139
 4         45    22 3B       J       193
 5         45    24 2B       B       327
 6         45    25 OF       P       340
 7         45    23 P        Q       356
 8         45    13 OF       N       400
 9         45    13 SS       L       401
10         45    45 1B       G       614

如果您将数据更改为

N <- 1000

set.seed(123)
df <- tibble(avg_points = sample(5:45,N, replace = T),
             cost = sample(3:45,N, replace = T),
             position = sample(c("P","C","1B","2B","3B","SS","OF"),N, replace = T),
             team = sample(c("A", "B"),N, replace = T)) %>% 
  mutate(id = row_number())

现在不可行,因为数据中的团队数量少于 3。

您可以检查它现在是否有效:

sort(unique(df$team))[result$solution[1027:1052]==1]
[1] "B" "E" "I" "J" "N" "P" "Q" "X"
sort(unique(roster$team))
[1] "B" "E" "I" "J" "N" "P" "Q" "X"