用于分析对调查中不同排名问题的回答之间关系的代码
Code to analyze relationships between responses to different ranking questions on a survey
我的目标是找到更简单的代码,它可以概括,显示对两个调查问题的回答之间的关系。在 MWE 中,一个问题要求受访者从 1 到 8 对八个营销选择进行排名,另一个问题要求他们对从 1 到 9 的九个属性选择进行排名。排名越高表明受访者更喜欢该选择。这是数据框。
structure(list(Email = c("a", "b", "c", "d", "e", "f", "g", "h",
"i"), Ads = c(2, 1, 1, 1, 1, 2, 1, 1, 1), Alumni = c(3, 2, 2,
3, 2, 3, 2, 2, 2), Articles = c(6, 4, 3, 2, 3, 4, 3, 3, 3), Referrals = c(4,
3, 4, 8, 7, 8, 8, 6, 4), Speeches = c(7, 7, 6, 7, 4, 7, 4, 5,
5), Updates = c(8, 6, 6, 5, 5, 5, 5, 7, 6), Visits = c(5, 8,
7, 6, 6, 6, 6, 4, 8), `Business Savvy` = c(10, 6, 10, 10, 4,
4, 6, 8, 9), Communication = c(4, 3, 8, 3, 3, 9, 7, 6, 7), Experience = c(7,
7, 7, 9, 2, 8, 5, 9, 5), Innovation = c(2, 1, 4, 2, 1, 2, 2,
1, 1), Nearby = c(3, 2, 2, 1, 5, 3, 3, 2, 2), Personal = c(8,
10, 6, 8, 6, 10, 4, 3, 3), Rates = c(9, 5, 9, 6, 9, 7, 10, 5,
4), `Staffing Model` = c(6, 8, 5, 5, 7, 5, 8, 7, 8), `Total Cost` = c(5,
4, 3, 7, 8, 6, 9, 4, 6)), row.names = c(NA, -9L), class = c("tbl_df",
"tbl", "data.frame"))
如果数字排名不能用于我计算关系(correlations)的解决方案,请指正。
希望它们可以被使用,我得出了以下单调的代码,我希望它计算每个方法选择与每个属性选择的相关矩阵。
library(psych)
dataframe2 <- psych::corr.test(dataframe[ , c(2, 9:17)])[[1]][1:10] # the first method vs all attributes
dataframe3 <- psych::corr.test(dataframe[ , c(3, 9:17)])[[1]][1:10] # the 2nd method vs all attributes and so on
dataframe4 <- psych::corr.test(dataframe[ , c(4, 9:17)])[[1]][1:10]
dataframe5 <- psych::corr.test(dataframe[ , c(5, 9:17)])[[1]][1:10]
dataframe6 <- psych::corr.test(dataframe[ , c(6, 9:17)])[[1]][1:10]
dataframe7 <- psych::corr.test(dataframe[ , c(7, 9:17)])[[1]][1:10]
dataframe8 <- psych::corr.test(dataframe[ , c(8, 9:17)])[[1]][1:10]
# create a dataframe from the rbinded rows
bind <- data.frame(rbind(dataframe2, dataframe3, dataframe4, dataframe5, dataframe6, dataframe7, dataframe8))
重命名行和列:
colnames(bind) <- c("Sel", colnames(dataframe[9:17]))
rownames(bind) <- colnames(dataframe[2:8])
如何更有效地完成上述任务?
顺便说一句,绑定数据框还允许使用 DataExplorer
包生成热图。
library(DataExplorer)
DataExplorer::plot_correlation(bind)
[总结]
在我们的讨论范围内,有两种获取相关数据的方法。
- 使用
stats::cor
,即cor(subset(dataframe, select = -Email))
- 使用
psych::corr.test
,即corr.test(subset(dataframe, select = -Email))[[1]]
然后您可以使用所需的行和列对相关矩阵进行子集化。
为了使用DataExplorer::plot_correlation
,你可以简单地做plot_correlation(dataframe, type = "c")
。注意:输出热图将包括所有列的相关性,因此您可以忽略不感兴趣的列。
[原答案]
## Create data
dataframe <- structure(
list(
Email = c("a", "b", "c", "d", "e", "f", "g", "h", "i"),
Ads = c(2, 1, 1, 1, 1, 2, 1, 1, 1),
Alumni = c(3, 2, 2, 3, 2, 3, 2, 2, 2),
Articles = c(6, 4, 3, 2, 3, 4, 3, 3, 3),
Referrals = c(4, 3, 4, 8, 7, 8, 8, 6, 4),
Speeches = c(7, 7, 6, 7, 4, 7, 4, 5, 5),
Updates = c(8, 6, 6, 5, 5, 5, 5, 7, 6),
Visits = c(5, 8, 7, 6, 6, 6, 6, 4, 8),
`Business Savvy` = c(10, 6, 10, 10, 4, 4, 6, 8, 9),
Communication = c(4, 3, 8, 3, 3, 9, 7, 6, 7),
Experience = c(7, 7, 7, 9, 2, 8, 5, 9, 5),
Innovation = c(2, 1, 4, 2, 1, 2, 2, 1, 1),
Nearby = c(3, 2, 2, 1, 5, 3, 3, 2, 2),
Personal = c(8, 10, 6, 8, 6, 10, 4, 3, 3),
Rates = c(9, 5, 9, 6, 9, 7, 10, 5, 4),
`Staffing Model` = c(6, 8, 5, 5, 7, 5, 8, 7, 8),
`Total Cost` = c(5, 4, 3, 7, 8, 6, 9, 4, 6)
),
row.names = c(NA, -9L),
class = c("tbl_df", "tbl", "data.frame")
)
严格按照您的示例,我们可以执行以下操作:
## Calculate correlation
df2 <- subset(dataframe, select = -Email)
marketing_selections <- names(df2)[1:7]
attribute_selections <- names(df2)[8:16]
corr_matrix <- psych::corr.test(df2)[[1]]
bind <- subset(corr_matrix,
subset = rownames(corr_matrix) %in% marketing_selections,
select = attribute_selections)
DataExplorer::plot_correlation(bind)
警告
然而,这是你真正想要的吗? psych::corr.test
生成相关矩阵,DataExplorer::plot_correlation
再次计算相关。就像是相关性的相关性。
我的目标是找到更简单的代码,它可以概括,显示对两个调查问题的回答之间的关系。在 MWE 中,一个问题要求受访者从 1 到 8 对八个营销选择进行排名,另一个问题要求他们对从 1 到 9 的九个属性选择进行排名。排名越高表明受访者更喜欢该选择。这是数据框。
structure(list(Email = c("a", "b", "c", "d", "e", "f", "g", "h",
"i"), Ads = c(2, 1, 1, 1, 1, 2, 1, 1, 1), Alumni = c(3, 2, 2,
3, 2, 3, 2, 2, 2), Articles = c(6, 4, 3, 2, 3, 4, 3, 3, 3), Referrals = c(4,
3, 4, 8, 7, 8, 8, 6, 4), Speeches = c(7, 7, 6, 7, 4, 7, 4, 5,
5), Updates = c(8, 6, 6, 5, 5, 5, 5, 7, 6), Visits = c(5, 8,
7, 6, 6, 6, 6, 4, 8), `Business Savvy` = c(10, 6, 10, 10, 4,
4, 6, 8, 9), Communication = c(4, 3, 8, 3, 3, 9, 7, 6, 7), Experience = c(7,
7, 7, 9, 2, 8, 5, 9, 5), Innovation = c(2, 1, 4, 2, 1, 2, 2,
1, 1), Nearby = c(3, 2, 2, 1, 5, 3, 3, 2, 2), Personal = c(8,
10, 6, 8, 6, 10, 4, 3, 3), Rates = c(9, 5, 9, 6, 9, 7, 10, 5,
4), `Staffing Model` = c(6, 8, 5, 5, 7, 5, 8, 7, 8), `Total Cost` = c(5,
4, 3, 7, 8, 6, 9, 4, 6)), row.names = c(NA, -9L), class = c("tbl_df",
"tbl", "data.frame"))
如果数字排名不能用于我计算关系(correlations)的解决方案,请指正。
希望它们可以被使用,我得出了以下单调的代码,我希望它计算每个方法选择与每个属性选择的相关矩阵。
library(psych)
dataframe2 <- psych::corr.test(dataframe[ , c(2, 9:17)])[[1]][1:10] # the first method vs all attributes
dataframe3 <- psych::corr.test(dataframe[ , c(3, 9:17)])[[1]][1:10] # the 2nd method vs all attributes and so on
dataframe4 <- psych::corr.test(dataframe[ , c(4, 9:17)])[[1]][1:10]
dataframe5 <- psych::corr.test(dataframe[ , c(5, 9:17)])[[1]][1:10]
dataframe6 <- psych::corr.test(dataframe[ , c(6, 9:17)])[[1]][1:10]
dataframe7 <- psych::corr.test(dataframe[ , c(7, 9:17)])[[1]][1:10]
dataframe8 <- psych::corr.test(dataframe[ , c(8, 9:17)])[[1]][1:10]
# create a dataframe from the rbinded rows
bind <- data.frame(rbind(dataframe2, dataframe3, dataframe4, dataframe5, dataframe6, dataframe7, dataframe8))
重命名行和列:
colnames(bind) <- c("Sel", colnames(dataframe[9:17]))
rownames(bind) <- colnames(dataframe[2:8])
如何更有效地完成上述任务?
顺便说一句,绑定数据框还允许使用 DataExplorer
包生成热图。
library(DataExplorer)
DataExplorer::plot_correlation(bind)
[总结]
在我们的讨论范围内,有两种获取相关数据的方法。
- 使用
stats::cor
,即cor(subset(dataframe, select = -Email))
- 使用
psych::corr.test
,即corr.test(subset(dataframe, select = -Email))[[1]]
然后您可以使用所需的行和列对相关矩阵进行子集化。
为了使用DataExplorer::plot_correlation
,你可以简单地做plot_correlation(dataframe, type = "c")
。注意:输出热图将包括所有列的相关性,因此您可以忽略不感兴趣的列。
[原答案]
## Create data
dataframe <- structure(
list(
Email = c("a", "b", "c", "d", "e", "f", "g", "h", "i"),
Ads = c(2, 1, 1, 1, 1, 2, 1, 1, 1),
Alumni = c(3, 2, 2, 3, 2, 3, 2, 2, 2),
Articles = c(6, 4, 3, 2, 3, 4, 3, 3, 3),
Referrals = c(4, 3, 4, 8, 7, 8, 8, 6, 4),
Speeches = c(7, 7, 6, 7, 4, 7, 4, 5, 5),
Updates = c(8, 6, 6, 5, 5, 5, 5, 7, 6),
Visits = c(5, 8, 7, 6, 6, 6, 6, 4, 8),
`Business Savvy` = c(10, 6, 10, 10, 4, 4, 6, 8, 9),
Communication = c(4, 3, 8, 3, 3, 9, 7, 6, 7),
Experience = c(7, 7, 7, 9, 2, 8, 5, 9, 5),
Innovation = c(2, 1, 4, 2, 1, 2, 2, 1, 1),
Nearby = c(3, 2, 2, 1, 5, 3, 3, 2, 2),
Personal = c(8, 10, 6, 8, 6, 10, 4, 3, 3),
Rates = c(9, 5, 9, 6, 9, 7, 10, 5, 4),
`Staffing Model` = c(6, 8, 5, 5, 7, 5, 8, 7, 8),
`Total Cost` = c(5, 4, 3, 7, 8, 6, 9, 4, 6)
),
row.names = c(NA, -9L),
class = c("tbl_df", "tbl", "data.frame")
)
严格按照您的示例,我们可以执行以下操作:
## Calculate correlation
df2 <- subset(dataframe, select = -Email)
marketing_selections <- names(df2)[1:7]
attribute_selections <- names(df2)[8:16]
corr_matrix <- psych::corr.test(df2)[[1]]
bind <- subset(corr_matrix,
subset = rownames(corr_matrix) %in% marketing_selections,
select = attribute_selections)
DataExplorer::plot_correlation(bind)
警告
然而,这是你真正想要的吗? psych::corr.test
生成相关矩阵,DataExplorer::plot_correlation
再次计算相关。就像是相关性的相关性。