PyTorch:在张量的单维上应用映射
PyTorch: apply mapping over singleton dimension of tensor
恐怕标题不是很详细,但我想不出更好的标题。基本上我的问题如下:
我有一个形状为 (n, 1, h, w)
的 pytorch 张量,用于任意整数 n
、h
和 w
(在我的特定情况下,这个数组代表一批灰度图像维度 h x w
).
我还有另一个形状为 (m, 2)
的张量,它将第一个数组中的每个可能值(即第一个数组可以包含从 0
到 m - 1
的值)映射到某个元组的价值。我想 "apply" 这个映射到第一个数组,这样我就可以获得一个形状为 (n, 2, h, w)
.
的数组
我希望这有点清楚,我发现这很难用语言表达,这是一个代码示例(但请注意,由于涉及四维数组,这也不是非常直观):
import torch
m = 18
# could also be arbitrary tensor with this shape with values between 0 and m - 1
a = torch.arange(m).reshape(2, 1, 3, 3)
# could also be arbitrary tensor with this shape
b = torch.LongTensor(
[[11, 17, 9, 6, 5, 4, 2, 10, 3, 13, 14, 12, 7, 1, 15, 16, 8, 0],
[11, 8, 4, 14, 13, 12, 16, 1, 5, 17, 0, 10, 7, 15, 9, 6, 2, 3]]).t()
# I probably have to do this and the permute/reshape, but how?
c = b.index_select(0, a.flatten())
# ...
# another approach that I think works (but I'm not really sure why, I found this
# more or less by trial and error). I would ideally like to find a 'nicer' way
# of doing this
c = torch.stack([
b.index_select(0, a_.flatten()).reshape(3, 3, 2).permute(2, 0, 1)
for a_ in a
])
# the end result should be:
#[[[[11, 17, 9],
# [ 6, 5, 4],
# [ 2, 10, 3]],
#
# [[11, 8, 4],
# [14, 13, 12],
# [16, 1, 5]]],
#
#
# [[[13, 14, 12],
# [ 7, 1, 15],
# [16, 8, 0]],
#
# [[17, 0, 10],
# [ 7, 15, 9],
# [ 6, 2, 3]]]]
如何高效地执行此转换? (理想情况下不使用任何额外的内存)。在 numpy 中,这可以通过 np.apply_along_axis
轻松实现,但似乎没有与之等效的 pytorch。
这是使用切片、堆叠和基于视图的整形的一种方法:
In [239]: half_way = b.shape[0]//2
In [240]: upper_half = torch.stack((b[:half_way, :][:, 0], b[:half_way, :][:, 1]), dim=0).view(-1, 3, 3)
In [241]: lower_half = torch.stack((b[half_way:, :][:, 0], b[half_way:, :][:, 1]), dim=0).view(-1, 3, 3)
In [242]: torch.stack((upper_half, lower_half))
Out[242]:
tensor([[[[11, 17, 9],
[ 6, 5, 4],
[ 2, 10, 3]],
[[11, 8, 4],
[14, 13, 12],
[16, 1, 5]]],
[[[13, 14, 12],
[ 7, 1, 15],
[16, 8, 0]],
[[17, 0, 10],
[ 7, 15, 9],
[ 6, 2, 3]]]])
一些注意事项是这仅适用于 n=2
。但是,这比基于循环的方法快 1.7 倍,但涉及更多代码。
这是一个更通用的方法,它可以扩展到任何正整数n
:
In [327]: %%timeit
...: block_size = b.shape[0]//a.shape[0]
...: seq_of_tensors = [b[block_size*idx:block_size*(idx+1), :].permute(1, 0).flatten().reshape(2, 3, 3).unsqueeze(0) for idx in range(a.shape[0])]
...: torch.cat(seq_of_tensors)
...:
23.5 µs ± 460 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
您也可以使用 view
而不是重塑:
block_size = b.shape[0]//a.shape[0]
seq_of_tensors = [b[block_size*idx:block_size*(idx+1), :].permute(1, 0).flatten().view(2, 3, 3).unsqueeze(0) for idx in range(a.shape[0])]
torch.cat(seq_of_tensors)
# outputs
tensor([[[[11, 17, 9],
[ 6, 5, 4],
[ 2, 10, 3]],
[[11, 8, 4],
[14, 13, 12],
[16, 1, 5]]],
[[[13, 14, 12],
[ 7, 1, 15],
[16, 8, 0]],
[[17, 0, 10],
[ 7, 15, 9],
[ 6, 2, 3]]]])
注意:请注意,我仍然使用列表推导式,因为我们必须将张量 b
平均分配以进行排列、展平、重塑、解压和然后 concatenate/stack 沿维度 0。它仍然比我上面的解决方案快一点。
恐怕标题不是很详细,但我想不出更好的标题。基本上我的问题如下:
我有一个形状为 (n, 1, h, w)
的 pytorch 张量,用于任意整数 n
、h
和 w
(在我的特定情况下,这个数组代表一批灰度图像维度 h x w
).
我还有另一个形状为 (m, 2)
的张量,它将第一个数组中的每个可能值(即第一个数组可以包含从 0
到 m - 1
的值)映射到某个元组的价值。我想 "apply" 这个映射到第一个数组,这样我就可以获得一个形状为 (n, 2, h, w)
.
我希望这有点清楚,我发现这很难用语言表达,这是一个代码示例(但请注意,由于涉及四维数组,这也不是非常直观):
import torch
m = 18
# could also be arbitrary tensor with this shape with values between 0 and m - 1
a = torch.arange(m).reshape(2, 1, 3, 3)
# could also be arbitrary tensor with this shape
b = torch.LongTensor(
[[11, 17, 9, 6, 5, 4, 2, 10, 3, 13, 14, 12, 7, 1, 15, 16, 8, 0],
[11, 8, 4, 14, 13, 12, 16, 1, 5, 17, 0, 10, 7, 15, 9, 6, 2, 3]]).t()
# I probably have to do this and the permute/reshape, but how?
c = b.index_select(0, a.flatten())
# ...
# another approach that I think works (but I'm not really sure why, I found this
# more or less by trial and error). I would ideally like to find a 'nicer' way
# of doing this
c = torch.stack([
b.index_select(0, a_.flatten()).reshape(3, 3, 2).permute(2, 0, 1)
for a_ in a
])
# the end result should be:
#[[[[11, 17, 9],
# [ 6, 5, 4],
# [ 2, 10, 3]],
#
# [[11, 8, 4],
# [14, 13, 12],
# [16, 1, 5]]],
#
#
# [[[13, 14, 12],
# [ 7, 1, 15],
# [16, 8, 0]],
#
# [[17, 0, 10],
# [ 7, 15, 9],
# [ 6, 2, 3]]]]
如何高效地执行此转换? (理想情况下不使用任何额外的内存)。在 numpy 中,这可以通过 np.apply_along_axis
轻松实现,但似乎没有与之等效的 pytorch。
这是使用切片、堆叠和基于视图的整形的一种方法:
In [239]: half_way = b.shape[0]//2
In [240]: upper_half = torch.stack((b[:half_way, :][:, 0], b[:half_way, :][:, 1]), dim=0).view(-1, 3, 3)
In [241]: lower_half = torch.stack((b[half_way:, :][:, 0], b[half_way:, :][:, 1]), dim=0).view(-1, 3, 3)
In [242]: torch.stack((upper_half, lower_half))
Out[242]:
tensor([[[[11, 17, 9],
[ 6, 5, 4],
[ 2, 10, 3]],
[[11, 8, 4],
[14, 13, 12],
[16, 1, 5]]],
[[[13, 14, 12],
[ 7, 1, 15],
[16, 8, 0]],
[[17, 0, 10],
[ 7, 15, 9],
[ 6, 2, 3]]]])
一些注意事项是这仅适用于 n=2
。但是,这比基于循环的方法快 1.7 倍,但涉及更多代码。
这是一个更通用的方法,它可以扩展到任何正整数n
:
In [327]: %%timeit
...: block_size = b.shape[0]//a.shape[0]
...: seq_of_tensors = [b[block_size*idx:block_size*(idx+1), :].permute(1, 0).flatten().reshape(2, 3, 3).unsqueeze(0) for idx in range(a.shape[0])]
...: torch.cat(seq_of_tensors)
...:
23.5 µs ± 460 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
您也可以使用 view
而不是重塑:
block_size = b.shape[0]//a.shape[0]
seq_of_tensors = [b[block_size*idx:block_size*(idx+1), :].permute(1, 0).flatten().view(2, 3, 3).unsqueeze(0) for idx in range(a.shape[0])]
torch.cat(seq_of_tensors)
# outputs
tensor([[[[11, 17, 9],
[ 6, 5, 4],
[ 2, 10, 3]],
[[11, 8, 4],
[14, 13, 12],
[16, 1, 5]]],
[[[13, 14, 12],
[ 7, 1, 15],
[16, 8, 0]],
[[17, 0, 10],
[ 7, 15, 9],
[ 6, 2, 3]]]])
注意:请注意,我仍然使用列表推导式,因为我们必须将张量 b
平均分配以进行排列、展平、重塑、解压和然后 concatenate/stack 沿维度 0。它仍然比我上面的解决方案快一点。