如何以同步方式合并两个 TPL DataFlow 管道?

How to merge two TPL DataFlow pipelines in synchronized fashion?

我想编写一个应用程序来评估来自两个传感器的传感器数据。两个传感器都在 Package 个对象中发送它们的数据,这些对象被分成 Frame 个对象。 Package 本质上是 Tuple<Timestamp, Data[]>FrameTuple<Timestamp, Data>。然后我需要始终使用来自两个来源的最早时间戳的 Frame

所以基本上我的对象流是

Package -(1:n)-> Frame \
                        }-pair synchronized-> Tuple<Frame, Frame>
Package -(1:n)-> Frame /

例子

假设每个 Package 包含 2 个或 3 个值(现实:5-7)和递增 1 的整数时间戳(现实:~200Hz => ~5ms 递增)。为了简单起见,"data" 只是 timestamp * 100

Packages (timestamp, values[])

Source 1:
{(19, [1700, 1800, 1900]), (22, [2000, 2100, 2200]), (26, [2500, 2600]),
 (29, [2700, 2800, 2900]), ...}

Source 2:
{(17, [1500, 1600, 1700]), (19, [1800, 1900]), (21, [2000, 2100]),
 (26, [2400, 2500, 2600]), ...}

(1:n) 步之后:

Frames (timestamp, value)

Source 1:
{(17, 1700), (18, 1800), (19, 1900), (20, 2000), (21, 2100),
 (22, 2200), (25, 2500), (26, 2600), (27, 2700), (28, 2800),
 (29, 2900), ...}

Source 2:
{(15, 1500), (16, 1600), (17, 1700), (18, 1800), (19, 1900),
 (20, 2000), (21, 2100), (24, 2400), (25, 2500), (26, 2600), ...}

pair synchronized 步骤之后:

Merged tuples (timestamp, source1, source2)

{(15, null, 1500), (16, null, 1600), (17, 1700, 1700), (18, 1800, 1800),
 (19, 1900, 1900), (20, 2000, 2000), (21, 2100, 2100), (22, 2200, null),
 (24, null, 2400), (25, 2500, 2500), (26, 2600, 2600), ...}

请注意,由于两个来源的 none 都发送了一个值,因此缺少时间戳 23。那只是一个副作用。我可以放入或不放入一个空元组,这无关紧要。元组是 (27, 2700, 2700) 还是 ((27, 2700), (27, 2700)) 也没有关系,我。 e. Tuple<Timestamp, Data, Data>Tuple<Frame, Frame>.


如果文档正确,我很确定 (1:n) 部分应该是 TransformManyBlock<Package, Frame>

但是pair synchronized部分用哪个块呢?一开始我以为JoinBlock<Frame, Frame> 将是我一直在寻找的东西,但它似乎只是将两个元素按索引配对。但由于既不能确保两个管道都以相同的时间戳开始,也不能确保两个管道始终产生稳定的连续时间戳流(因为有时带有几帧的包可能会在传输中丢失),这不是一个选项。所以我需要的是更多的 "MergeBlock" 可以决定下一个将两个输入流的哪个元素传播到输出(如果有的话)。

我想我必须自己写这样的东西。但是我无法编写正确处理两个 ISourceBlock 变量和一个 ITargetBlock 变量的代码。我基本上尽早陷入困境:

private void MergeSynchronized(
    ISourceBlock<Frame> source1,
    ISourceBlock<Frame> source2,
    ITargetBlock<Tuple<Frame, Frame>> target)
{
  var frame1 = source1.Receive();
  var frame2 = source2.Receive();

  //Loop {
  //  Depending on the timestamp [mis]match,
  //  either pair frame1+frame2 or frame1+null or null+frame2, and
  //  replace whichever frame(s) was/were propagated already
  //  with the next frame from the respective pipeline
  //}
}

我什至不确定这个草稿:方法应该是 async 以便我可以使用 var frame1 = await source1.ReceiveAsnyc(); 吗?循环的条件是什么?在哪里以及如何检查是否完成?如何解决这个明显的问题,即我的代码意味着我必须等到流中的间隙 超过 才能意识到存在间隙?

我考虑的替代方案是在管道中添加一个额外的块,确保每个传感器有足够的 "sentinel frames" 放入管道中,以便始终对齐每个管道中的第一个将对齐正确的两个。我 猜测 那将是一种 TransformManyBlock 读取帧,将 "expected" 时间戳与实际时间戳进行比较,然后为丢失的插入标记帧时间戳,直到帧的时间戳再次正确。

或者 pair synchronized 部分是停止 TPL 数据流对象并开始已经与 Data 部分一起使用的实际代码的地方吗?

TPL DataFlow API 的问题是,一切都是 internal/private and/or 密封的。这给你扩展 API.

的可能性不大

无论如何,对于您的问题,实施新的 SynchronizedJoinBlock class 可能是个好主意。实际业务逻辑位于 GetMessagesRecursive 方法中:

    public sealed class SynchronizedJoinBlock<T1, T2>
        : IReceivableSourceBlock<Tuple<T1, T2>>
    {
        private readonly object _syncObject = new object();
        private readonly Func<T1, T2, int> _compareFunction;
        private readonly Queue<T1> _target1Messages;
        private readonly Queue<T2> _target2Messages;
        private readonly TransformManyBlock<T1, Tuple<T1, T2>> _target1;
        private readonly TransformManyBlock<T2, Tuple<T1, T2>> _target2;
        private readonly BatchedJoinBlock<Tuple<T1, T2>, Tuple<T1, T2>> _batchedJoinBlock;
        private readonly TransformManyBlock<Tuple<IList<Tuple<T1, T2>>, IList<Tuple<T1, T2>>>, Tuple<T1, T2>> _transformManyBlock;

        public ITargetBlock<T1> Target1 => _target1;

        public ITargetBlock<T2> Target2 => _target2;

        public Task Completion => _transformManyBlock.Completion;

        public SynchronizedJoinBlock(Func<T1, T2, int> compareFunction)
        {
            _compareFunction = compareFunction
                ?? throw new ArgumentNullException(nameof(compareFunction));
            _batchedJoinBlock = new BatchedJoinBlock<Tuple<T1, T2>, Tuple<T1, T2>>(1);
            _target1Messages = new Queue<T1>();
            _target2Messages = new Queue<T2>();

            Func<ICollection<Tuple<T1, T2>>> getMessagesFunction = () =>
            {
                lock (_syncObject)
                {
                    if (_target1Messages.Count > 0 && _target2Messages.Count > 0)
                    {
                        return GetMessagesRecursive(_target1Messages.Peek(), _target2Messages.Peek()).ToArray();
                    }
                    else
                    {
                        return new Tuple<T1, T2>[0];
                    }
                }
            };

            _target1 = new TransformManyBlock<T1, Tuple<T1, T2>>((element) =>
            {
                _target1Messages.Enqueue(element);
                return getMessagesFunction();
            });
            _target1.LinkTo(_batchedJoinBlock.Target1, new DataflowLinkOptions() { PropagateCompletion = true });

            _target2 = new TransformManyBlock<T2, Tuple<T1, T2>>((element) =>
            {
                _target2Messages.Enqueue(element);
                return getMessagesFunction();
            });
            _target2.LinkTo(_batchedJoinBlock.Target2, new DataflowLinkOptions() { PropagateCompletion = true });

            _transformManyBlock = new TransformManyBlock<Tuple<IList<Tuple<T1, T2>>, IList<Tuple<T1, T2>>>, Tuple<T1, T2>>(
                element => element.Item1.Concat(element.Item2)
            );
            _batchedJoinBlock.LinkTo(_transformManyBlock, new DataflowLinkOptions() { PropagateCompletion = true });
        }

        private IEnumerable<Tuple<T1, T2>> GetMessagesRecursive(T1 value1, T2 value2)
        {
            int result = _compareFunction(value1, value2);
            if (result == 0)
            {
                yield return Tuple.Create(_target1Messages.Dequeue(), _target2Messages.Dequeue());
            }
            else if (result < 0)
            {
                yield return Tuple.Create(_target1Messages.Dequeue(), default(T2));

                if (_target1Messages.Count > 0)
                {
                    foreach (var item in GetMessagesRecursive(_target1Messages.Peek(), value2))
                    {
                        yield return item;
                    }
                }
            }
            else
            {
                yield return Tuple.Create(default(T1), _target2Messages.Dequeue());

                if (_target2Messages.Count > 0)
                {
                    foreach (var item in GetMessagesRecursive(value1, _target2Messages.Peek()))
                    {
                        yield return item;
                    }
                }
            }
        }

        public void Complete()
        {
            _target1.Complete();
            _target2.Complete();
        }

        Tuple<T1, T2> ISourceBlock<Tuple<T1, T2>>.ConsumeMessage(
            DataflowMessageHeader messageHeader,
            ITargetBlock<Tuple<T1, T2>> target, out bool messageConsumed)
        {
            return ((ISourceBlock<Tuple<T1, T2>>)_transformManyBlock)
                .ConsumeMessage(messageHeader, target, out messageConsumed);
        }

        void IDataflowBlock.Fault(Exception exception)
        {
            ((IDataflowBlock)_transformManyBlock).Fault(exception);
        }

        public IDisposable LinkTo(ITargetBlock<Tuple<T1, T2>> target,
            DataflowLinkOptions linkOptions)
        {
            return _transformManyBlock.LinkTo(target, linkOptions);
        }

        void ISourceBlock<Tuple<T1, T2>>.ReleaseReservation(
            DataflowMessageHeader messageHeader, ITargetBlock<Tuple<T1, T2>> target)
        {
            ((ISourceBlock<Tuple<T1, T2>>)_transformManyBlock)
                .ReleaseReservation(messageHeader, target);
        }

        bool ISourceBlock<Tuple<T1, T2>>.ReserveMessage(
            DataflowMessageHeader messageHeader, ITargetBlock<Tuple<T1, T2>> target)
        {
            return ((ISourceBlock<Tuple<T1, T2>>)_transformManyBlock)
                .ReserveMessage(messageHeader, target);
        }

        public bool TryReceive(Predicate<Tuple<T1, T2>> filter, out Tuple<T1, T2> item)
        {
            return _transformManyBlock.TryReceive(filter, out item);
        }

        public bool TryReceiveAll(out IList<Tuple<T1, T2>> items)
        {
            return _transformManyBlock.TryReceiveAll(out items);
        }
    }

这是一个 SynchronizedJoinBlock 块的实现,类似于 Hardy Hobeck 的 中提出的那个。这个负责处理一些次要的细节,例如取消、处理异常以及在输入块 Target1Target2 标记为已完成时处理传播剩余项目。此外,合并逻辑不涉及递归,这应该使其性能更好(希望我没有测量它)并且不易受到堆栈溢出异常的影响。小偏差:输出是 ValueTuple<T1, T2> 而不是 Tuple<T1, T2> (目的是减少分配)。

public sealed class SynchronizedJoinBlock<T1, T2> : IReceivableSourceBlock<(T1, T2)>
{
    private readonly Func<T1, T2, int> _comparison;
    private readonly Queue<T1> _queue1 = new Queue<T1>();
    private readonly Queue<T2> _queue2 = new Queue<T2>();
    private readonly ActionBlock<T1> _input1;
    private readonly ActionBlock<T2> _input2;
    private readonly BufferBlock<(T1, T2)> _output;
    private readonly object _locker = new object();

    public SynchronizedJoinBlock(Func<T1, T2, int> comparison,
        CancellationToken cancellationToken = default)
    {
        _comparison = comparison ?? throw new ArgumentNullException(nameof(comparison));

        // Create the three internal blocks
        var options = new ExecutionDataflowBlockOptions()
        {
            CancellationToken = cancellationToken
        };
        _input1 = new ActionBlock<T1>(Add1, options);
        _input2 = new ActionBlock<T2>(Add2, options);
        _output = new BufferBlock<(T1, T2)>(options);

        // Link the input blocks with the output block
        var inputTasks = new Task[] { _input1.Completion, _input2.Completion };
        Task.WhenAny(inputTasks).Unwrap().ContinueWith(t =>
        {
            // If ANY input block fails, then the whole block has failed
            ((IDataflowBlock)_output).Fault(t.Exception.InnerException);
            if (!_input1.Completion.IsCompleted) _input1.Complete();
            if (!_input2.Completion.IsCompleted) _input2.Complete();
            ClearQueues();
        }, default, TaskContinuationOptions.OnlyOnFaulted |
            TaskContinuationOptions.RunContinuationsAsynchronously,
            TaskScheduler.Default);
        Task.WhenAll(inputTasks).ContinueWith(t =>
        {
            // If ALL input blocks succeeded, then the whole block has succeeded
            try
            {
                if (!t.IsCanceled) PostRemaining(); // Post what's left
            }
            catch (Exception ex)
            {
                ((IDataflowBlock)_output).Fault(ex);
            }
            _output.Complete();
            ClearQueues();
        }, default, TaskContinuationOptions.NotOnFaulted |
            TaskContinuationOptions.RunContinuationsAsynchronously,
            TaskScheduler.Default);
    }

    public ITargetBlock<T1> Target1 => _input1;
    public ITargetBlock<T2> Target2 => _input2;
    public Task Completion => _output.Completion;

    private void Add1(T1 value1)
    {
        lock (_locker)
        {
            _queue1.Enqueue(value1);
            FindAndPostMatched_Unsafe();
        }
    }

    private void Add2(T2 value2)
    {
        lock (_locker)
        {
            _queue2.Enqueue(value2);
            FindAndPostMatched_Unsafe();
        }
    }

    private void FindAndPostMatched_Unsafe()
    {
        while (_queue1.Count > 0 && _queue2.Count > 0)
        {
            var result = _comparison(_queue1.Peek(), _queue2.Peek());
            if (result < 0)
            {
                _output.Post((_queue1.Dequeue(), default));
            }
            else if (result > 0)
            {
                _output.Post((default, _queue2.Dequeue()));
            }
            else // result == 0
            {
                _output.Post((_queue1.Dequeue(), _queue2.Dequeue()));
            }
        }
    }

    private void PostRemaining()
    {
        lock (_locker)
        {
            while (_queue1.Count > 0)
            {
                _output.Post((_queue1.Dequeue(), default));
            }
            while (_queue2.Count > 0)
            {
                _output.Post((default, _queue2.Dequeue()));
            }
        }
    }

    private void ClearQueues()
    {
        lock (_locker)
        {
            _queue1.Clear();
            _queue2.Clear();
        }
    }

    public void Complete() => _output.Complete();

    public void Fault(Exception exception)
        => ((IDataflowBlock)_output).Fault(exception);

    public IDisposable LinkTo(ITargetBlock<(T1, T2)> target,
        DataflowLinkOptions linkOptions)
        => _output.LinkTo(target, linkOptions);

    public bool TryReceive(Predicate<(T1, T2)> filter, out (T1, T2) item)
        => _output.TryReceive(filter, out item);

    public bool TryReceiveAll(out IList<(T1, T2)> items)
        => _output.TryReceiveAll(out items);

    (T1, T2) ISourceBlock<(T1, T2)>.ConsumeMessage(
        DataflowMessageHeader messageHeader, ITargetBlock<(T1, T2)> target,
        out bool messageConsumed)
        => ((ISourceBlock<(T1, T2)>)_output).ConsumeMessage(
            messageHeader, target, out messageConsumed);

    void ISourceBlock<(T1, T2)>.ReleaseReservation(
        DataflowMessageHeader messageHeader, ITargetBlock<(T1, T2)> target)
        => ((ISourceBlock<(T1, T2)>)_output).ReleaseReservation(
            messageHeader, target);

    bool ISourceBlock<(T1, T2)>.ReserveMessage(
        DataflowMessageHeader messageHeader, ITargetBlock<(T1, T2)> target)
        => ((ISourceBlock<(T1, T2)>)_output).ReserveMessage(
            messageHeader, target);
}

用法示例:

var joinBlock = new SynchronizedJoinBlock<(int, int), (int, int)>(
    (x, y) => Comparer<int>.Default.Compare(x.Item1, y.Item1));

var source1 = new (int, int)[] {(17, 1700), (18, 1800), (19, 1900),
    (20, 2000), (21, 2100), (22, 2200), (25, 2500), (26, 2600),
    (27, 2700), (28, 2800), (29, 2900)};

var source2 = new (int, int)[] {(15, 1500), (16, 1600), (17, 1700),
    (18, 1800), (19, 1900), (20, 2000), (21, 2100), (24, 2400),
    (25, 2500), (26, 2600)};

Array.ForEach(source1, x => joinBlock.Target1.Post(x));
Array.ForEach(source2, x => joinBlock.Target2.Post(x));

joinBlock.Target1.Complete();
joinBlock.Target2.Complete();

while (joinBlock.OutputAvailableAsync().Result)
{
    Console.WriteLine($"> Received: {joinBlock.Receive()}");
}

输出:

Received: ((0, 0), (15, 1500))
Received: ((0, 0), (16, 1600))
Received: ((17, 1700), (17, 1700))
Received: ((18, 1800), (18, 1800))
Received: ((19, 1900), (19, 1900))
Received: ((20, 2000), (20, 2000))
Received: ((21, 2100), (21, 2100))
Received: ((22, 2200), (0, 0))
Received: ((0, 0), (24, 2400))
Received: ((25, 2500), (25, 2500))
Received: ((26, 2600), (26, 2600))
Received: ((27, 2700), (0, 0))
Received: ((28, 2800), (0, 0))
Received: ((29, 2900), (0, 0))

假定传入的数据是有序的。

此 class 与我不久前在 somewhat related question.

中发布的 JoinDependencyBlock class 具有相似的结构