调整超过 2 个超参数时必须使用 partial.dep 请求部分依赖?
Partial dependence must be requested with partial.dep when tuning more than 2 hyperparameters?
我正在调整超过 2 个超参数,同时使用我设置的函数 generateHyperParsEffectData 生成超参数效果数据 partial.dep = TRUE,在绘制 plotHyperParsEffect 时我遇到分类学习器错误,它需要回归器学习器
这是我的分类任务和学习者
classif.task <- makeClassifTask(id = "rfh2o.task", data = Train_clean, target = "Action")
rfh20.lrn.base = makeLearner("classif.h2o.randomForest", predict.type = "prob",fix.factors.prediction=TRUE)
rfh20.lrn <- makeFilterWrapper(rfh20.lrn.base, fw.method = "chi.squared", fw.perc = 0.5)
这是我的调音
rdesc <- makeResampleDesc("CV", iters = 3L, stratify = TRUE)
ps<- makeParamSet(makeDiscreteParam("fw.perc", values = seq(0.2, 0.8, 0.1)),
makeIntegerParam("mtries", lower = 2, upper = 10),
makeIntegerParam("ntrees", lower = 20, upper = 50)
)
Tuned_rf <- tuneParams(rfh20.lrn, task = QBE_classif.task, resampling = rdesc.h2orf, par.set = ps.h2orf, control = makeTuneControlGrid())
编曲时
h2orf_data = generateHyperParsEffectData(Tuned_rf, partial.dep = TRUE)
plotHyperParsEffect(h2orf_data, x = "iteration", y = "mmce.test.mean", plot.type = "line", partial.dep.learn =rfh20.lrn)
我遇到错误
Error in checkLearner(partial.dep.learn, "regr") :
Learner 'classif.h2o.randomForest.filtered' must be of type 'regr', not: 'classif'
我希望看到更多调整要求的情节,以便我可以添加更多超级调整,我是不是错过了什么。
partial.dep.learn
参数需要一个回归学习器;参见 the documentation。
我正在调整超过 2 个超参数,同时使用我设置的函数 generateHyperParsEffectData 生成超参数效果数据 partial.dep = TRUE,在绘制 plotHyperParsEffect 时我遇到分类学习器错误,它需要回归器学习器
这是我的分类任务和学习者
classif.task <- makeClassifTask(id = "rfh2o.task", data = Train_clean, target = "Action")
rfh20.lrn.base = makeLearner("classif.h2o.randomForest", predict.type = "prob",fix.factors.prediction=TRUE)
rfh20.lrn <- makeFilterWrapper(rfh20.lrn.base, fw.method = "chi.squared", fw.perc = 0.5)
这是我的调音
rdesc <- makeResampleDesc("CV", iters = 3L, stratify = TRUE)
ps<- makeParamSet(makeDiscreteParam("fw.perc", values = seq(0.2, 0.8, 0.1)),
makeIntegerParam("mtries", lower = 2, upper = 10),
makeIntegerParam("ntrees", lower = 20, upper = 50)
)
Tuned_rf <- tuneParams(rfh20.lrn, task = QBE_classif.task, resampling = rdesc.h2orf, par.set = ps.h2orf, control = makeTuneControlGrid())
编曲时
h2orf_data = generateHyperParsEffectData(Tuned_rf, partial.dep = TRUE)
plotHyperParsEffect(h2orf_data, x = "iteration", y = "mmce.test.mean", plot.type = "line", partial.dep.learn =rfh20.lrn)
我遇到错误
Error in checkLearner(partial.dep.learn, "regr") :
Learner 'classif.h2o.randomForest.filtered' must be of type 'regr', not: 'classif'
我希望看到更多调整要求的情节,以便我可以添加更多超级调整,我是不是错过了什么。
partial.dep.learn
参数需要一个回归学习器;参见 the documentation。