优化变化的变量以获得多列的最大 Pearson 相关系数

Optimize changing variables to get max Pearson's correlation coefficient for multiple columns

修改:

如果我有一个包含 5 列的 pandas DataFrame Col1 & Col2 & Col3 & Col4 & Col5 并且我需要在(Col2,Col3) & (Col2,Col4) & (Col2,Col5) 之间获得最大皮尔逊相关系数考虑 Col1

中的值

下式得到的Col2的修正值:

df['Col1']=np.power((df['Col1']),B)
df['Col2']=df['Col2']*df['Col1']

其中 B 是变化的变量(单个值)以获得最大皮尔逊相关系数(Col2Col3 的新值)和([= 的新值12=],Col4) & (Col2,Col5 的新值).

更新:

上面的table包含我上面提到的5列,(Col2,Col3) & (Col2,[=14=之间的相关系数]) & (Col2,Col5) 说明在 table 下面。

我需要根据上述两个等式更改 Col2 的值,其中更改值为 B

所以问题是如何获得 B 的最佳值,使新的相关系数大于或等于其对应项(旧)?

更新 2:

第 1 列、第 2 列、第 3 列、第 4 列、第 5 列

2,0.051361397,2618,1453,1099

4,0.053507779,306,153,150

2,0.041236151,39,54,34

6,0.094526419,2755,2209,1947

4,0.079773397,2313,1261,1022

4,0.083891415,3528,2502,2029

6,0.090737243,3594,2781,2508

2,0.069552772,370,234,246

2,0.052401789,690,402,280

2,0.039930675,1218,846,631

4,0.065952096,1706,523,453

2,0.053064126,314,197,123

6,0.076847486,4019,1675,1452

2,0.044881545,604,402,356

2,0.073102611,2214,1263,1050

0,0.046998526,938,648,572

不是很优雅,但是很管用;随意使它更通用:

import pandas as pd
from scipy.optimize import minimize


def minimize_me(b, df):

    # we want to maximize, so we have to multiply by -1
    return -1 * df['Col3'].corr(df['Col2'] * df['Col1'] ** b )

# read your dataframe from somehwere, e.g. csv
df = pd.read_clipboard(sep=',')

# B is greater than 0 for now
bnds = [(0, None)]

res = minimize(minimize_me, (1), args=(df,), bounds=bnds)

if res.success:
    # that's the optimal B
    print(res.x[0])

    # that's the highest correlation you can get
    print(-1 * res.fun)
else:
    print("Sorry, the optimization was not successful. Try with another initial"
          " guess or optimization method")

这将打印:

0.9020784246026575 # your B
0.7614993786787415 # highest correlation for corr(col2, col3)

我现在阅读 clipboard,将其替换为您的 .csv 文件。然后,您还应该避免对列进行硬编码;上面的代码只是为了演示目的,让您了解如何设置优化问题本身。

如果你对总和感兴趣,可以使用(其余代码未修改):

def minimize_me(b, df):

    col_mod = df['Col2'] * df['Col1'] ** b

    # we want to maximize, so we have to multiply by -1
    return -1 * (df['Col3'].corr(col_mod) +
                 df['Col4'].corr(col_mod) +
                 df['Col5'].corr(col_mod))

这将打印:

1.0452394748131613
2.3428368479642137