如何在 Tensorflow 2.0 中应用 Guided BackProp?
How to apply Guided BackProp in Tensorflow 2.0?
我从 Tensorflow 2.0
开始,并尝试实施 Guided BackProp 以显示显着图。我首先计算图像的 y_pred
和 y_true
之间的损失,然后找到由于这种损失导致的所有层的梯度。
with tf.GradientTape() as tape:
logits = model(tf.cast(image_batch_val, dtype=tf.float32))
print('`logits` has type {0}'.format(type(logits)))
xentropy = tf.nn.softmax_cross_entropy_with_logits(labels=tf.cast(tf.one_hot(1-label_batch_val, depth=2), dtype=tf.int32), logits=logits)
reduced = tf.reduce_mean(xentropy)
grads = tape.gradient(reduced, model.trainable_variables)
但是,我不知道如何处理梯度以获得引导传播。
这是我的模型。我使用 Keras 图层创建了它:
image_input = Input((input_size, input_size, 3))
conv_0 = Conv2D(32, (3, 3), padding='SAME')(image_input)
conv_0_bn = BatchNormalization()(conv_0)
conv_0_act = Activation('relu')(conv_0_bn)
conv_0_pool = MaxPool2D((2, 2))(conv_0_act)
conv_1 = Conv2D(64, (3, 3), padding='SAME')(conv_0_pool)
conv_1_bn = BatchNormalization()(conv_1)
conv_1_act = Activation('relu')(conv_1_bn)
conv_1_pool = MaxPool2D((2, 2))(conv_1_act)
conv_2 = Conv2D(64, (3, 3), padding='SAME')(conv_1_pool)
conv_2_bn = BatchNormalization()(conv_2)
conv_2_act = Activation('relu')(conv_2_bn)
conv_2_pool = MaxPool2D((2, 2))(conv_2_act)
conv_3 = Conv2D(128, (3, 3), padding='SAME')(conv_2_pool)
conv_3_bn = BatchNormalization()(conv_3)
conv_3_act = Activation('relu')(conv_3_bn)
conv_4 = Conv2D(128, (3, 3), padding='SAME')(conv_3_act)
conv_4_bn = BatchNormalization()(conv_4)
conv_4_act = Activation('relu')(conv_4_bn)
conv_4_pool = MaxPool2D((2, 2))(conv_4_act)
conv_5 = Conv2D(128, (3, 3), padding='SAME')(conv_4_pool)
conv_5_bn = BatchNormalization()(conv_5)
conv_5_act = Activation('relu')(conv_5_bn)
conv_6 = Conv2D(128, (3, 3), padding='SAME')(conv_5_act)
conv_6_bn = BatchNormalization()(conv_6)
conv_6_act = Activation('relu')(conv_6_bn)
flat = Flatten()(conv_6_act)
fc_0 = Dense(64, activation='relu')(flat)
fc_0_bn = BatchNormalization()(fc_0)
fc_1 = Dense(32, activation='relu')(fc_0_bn)
fc_1_drop = Dropout(0.5)(fc_1)
output = Dense(2, activation='softmax')(fc_1_drop)
model = models.Model(inputs=image_input, outputs=output)
如果需要,我很高兴提供更多代码。
首先,你必须通过ReLU改变梯度的计算,即
这是来自 paper.
的图形示例
这个公式可以用下面的代码实现:
@tf.RegisterGradient("GuidedRelu")
def _GuidedReluGrad(op, grad):
gate_f = tf.cast(op.outputs[0] > 0, "float32") #for f^l > 0
gate_R = tf.cast(grad > 0, "float32") #for R^l+1 > 0
return gate_f * gate_R * grad
现在您必须使用以下代码覆盖 ReLU 的原始 TF 实现:
with tf.compat.v1.get_default_graph().gradient_override_map({'Relu': 'GuidedRelu'}):
#put here the code for computing the gradient
计算梯度后,您可以将结果可视化。
然而,最后一点。您计算单个 class 的可视化。这意味着,对于 Guided BackProp 的输入,您采用所选神经元的激活并将其他神经元的所有激活设置为零。
我按照@Simdi 的建议尝试了 @tf.RegisterGradient
和 gradient_override_map
,但对 TF2
无效。我不确定我是否在任何步骤中出错,但似乎 Relu
没有被 GuidedRelu
取代。我认为这是因为:“TensorFlow 2.0 中没有内置机制来覆盖范围内内置运算符的所有梯度。”正如 mrry
在本次讨论中的回答:
我用 @tf.custom_gradient
正如 mrry
所说,它非常适合我:
@tf.custom_gradient
def guidedRelu(x):
def grad(dy):
return tf.cast(dy>0,"float32") * tf.cast(x>0, "float32") * dy
return tf.nn.relu(x), grad
model = tf.keras.applications.resnet50.ResNet50(weights='imagenet', include_top=True)
gb_model = Model(
inputs = [model.inputs],
outputs = [model.get_layer("conv5_block3_out").output]
)
layer_dict = [layer for layer in gb_model.layers[1:] if hasattr(layer,'activation')]
for layer in layer_dict:
if layer.activation == tf.keras.activations.relu:
layer.activation = guidedRelu
with tf.GradientTape() as tape:
inputs = tf.cast(preprocessed_input, tf.float32)
tape.watch(inputs)
outputs = gb_model(inputs)
grads = tape.gradient(outputs,inputs)[0]
您可以在本 Google Colab Notebook 中查看上述两种方法的实现:https://colab.research.google.com/drive/17tAC7xx2IJxjK700bdaLatTVeDA02GJn?usp=sharing
@tf.custom_gradient
有效
@tf.RegisterGradient
没有工作,因为 relu
没有被注册的 GuidedRelu
. 覆盖
我从 Tensorflow 2.0
开始,并尝试实施 Guided BackProp 以显示显着图。我首先计算图像的 y_pred
和 y_true
之间的损失,然后找到由于这种损失导致的所有层的梯度。
with tf.GradientTape() as tape:
logits = model(tf.cast(image_batch_val, dtype=tf.float32))
print('`logits` has type {0}'.format(type(logits)))
xentropy = tf.nn.softmax_cross_entropy_with_logits(labels=tf.cast(tf.one_hot(1-label_batch_val, depth=2), dtype=tf.int32), logits=logits)
reduced = tf.reduce_mean(xentropy)
grads = tape.gradient(reduced, model.trainable_variables)
但是,我不知道如何处理梯度以获得引导传播。
这是我的模型。我使用 Keras 图层创建了它:
image_input = Input((input_size, input_size, 3))
conv_0 = Conv2D(32, (3, 3), padding='SAME')(image_input)
conv_0_bn = BatchNormalization()(conv_0)
conv_0_act = Activation('relu')(conv_0_bn)
conv_0_pool = MaxPool2D((2, 2))(conv_0_act)
conv_1 = Conv2D(64, (3, 3), padding='SAME')(conv_0_pool)
conv_1_bn = BatchNormalization()(conv_1)
conv_1_act = Activation('relu')(conv_1_bn)
conv_1_pool = MaxPool2D((2, 2))(conv_1_act)
conv_2 = Conv2D(64, (3, 3), padding='SAME')(conv_1_pool)
conv_2_bn = BatchNormalization()(conv_2)
conv_2_act = Activation('relu')(conv_2_bn)
conv_2_pool = MaxPool2D((2, 2))(conv_2_act)
conv_3 = Conv2D(128, (3, 3), padding='SAME')(conv_2_pool)
conv_3_bn = BatchNormalization()(conv_3)
conv_3_act = Activation('relu')(conv_3_bn)
conv_4 = Conv2D(128, (3, 3), padding='SAME')(conv_3_act)
conv_4_bn = BatchNormalization()(conv_4)
conv_4_act = Activation('relu')(conv_4_bn)
conv_4_pool = MaxPool2D((2, 2))(conv_4_act)
conv_5 = Conv2D(128, (3, 3), padding='SAME')(conv_4_pool)
conv_5_bn = BatchNormalization()(conv_5)
conv_5_act = Activation('relu')(conv_5_bn)
conv_6 = Conv2D(128, (3, 3), padding='SAME')(conv_5_act)
conv_6_bn = BatchNormalization()(conv_6)
conv_6_act = Activation('relu')(conv_6_bn)
flat = Flatten()(conv_6_act)
fc_0 = Dense(64, activation='relu')(flat)
fc_0_bn = BatchNormalization()(fc_0)
fc_1 = Dense(32, activation='relu')(fc_0_bn)
fc_1_drop = Dropout(0.5)(fc_1)
output = Dense(2, activation='softmax')(fc_1_drop)
model = models.Model(inputs=image_input, outputs=output)
如果需要,我很高兴提供更多代码。
首先,你必须通过ReLU改变梯度的计算,即
这是来自 paper.
这个公式可以用下面的代码实现:
@tf.RegisterGradient("GuidedRelu")
def _GuidedReluGrad(op, grad):
gate_f = tf.cast(op.outputs[0] > 0, "float32") #for f^l > 0
gate_R = tf.cast(grad > 0, "float32") #for R^l+1 > 0
return gate_f * gate_R * grad
现在您必须使用以下代码覆盖 ReLU 的原始 TF 实现:
with tf.compat.v1.get_default_graph().gradient_override_map({'Relu': 'GuidedRelu'}):
#put here the code for computing the gradient
计算梯度后,您可以将结果可视化。 然而,最后一点。您计算单个 class 的可视化。这意味着,对于 Guided BackProp 的输入,您采用所选神经元的激活并将其他神经元的所有激活设置为零。
我按照@Simdi 的建议尝试了 @tf.RegisterGradient
和 gradient_override_map
,但对 TF2
无效。我不确定我是否在任何步骤中出错,但似乎 Relu
没有被 GuidedRelu
取代。我认为这是因为:“TensorFlow 2.0 中没有内置机制来覆盖范围内内置运算符的所有梯度。”正如 mrry
在本次讨论中的回答:
我用 @tf.custom_gradient
正如 mrry
所说,它非常适合我:
@tf.custom_gradient
def guidedRelu(x):
def grad(dy):
return tf.cast(dy>0,"float32") * tf.cast(x>0, "float32") * dy
return tf.nn.relu(x), grad
model = tf.keras.applications.resnet50.ResNet50(weights='imagenet', include_top=True)
gb_model = Model(
inputs = [model.inputs],
outputs = [model.get_layer("conv5_block3_out").output]
)
layer_dict = [layer for layer in gb_model.layers[1:] if hasattr(layer,'activation')]
for layer in layer_dict:
if layer.activation == tf.keras.activations.relu:
layer.activation = guidedRelu
with tf.GradientTape() as tape:
inputs = tf.cast(preprocessed_input, tf.float32)
tape.watch(inputs)
outputs = gb_model(inputs)
grads = tape.gradient(outputs,inputs)[0]
您可以在本 Google Colab Notebook 中查看上述两种方法的实现:https://colab.research.google.com/drive/17tAC7xx2IJxjK700bdaLatTVeDA02GJn?usp=sharing
@tf.custom_gradient
有效@tf.RegisterGradient
没有工作,因为relu
没有被注册的GuidedRelu
. 覆盖