Python:如何展开循环数据以消除不连续性?

Python: How to unwrap circular data to remove discontinuities?

我有一个圆形数据网格,例如数据由从 0π 的角度给出。在此数据中,我有另一个较小的网格。

这可能看起来像这样:

我想做的是在红点上插入黑色数据。因此我使用 scipy.interpolate.griddata。这将给我以下结果:

如您所见,当角度从 'almost 0' 变为 'almost π' 时存在不连续性。

为了删除它,我尝试在插值之前解包数据。根据这个答案。我得到了这个(更好的)结果,但令人惊讶的是,右边有一个我不明白的新的不连续性。

所以我的问题是:如何使用np.unwrap来获得连续插值?或者有更好的方法吗?

这里是重现的代码:

import numpy as np
from matplotlib import pyplot as plt
from scipy.interpolate import griddata

ax = plt.subplot()
ax.set_aspect(1)

# Simulate some given data.
x, y = np.meshgrid(np.linspace(-10, 10, 20), np.linspace(-10, 10, 20))
phi = np.arctan2(y, x) % (2 * np.pi)
data = np.arctan2(np.cos(phi), np.sin(phi)) % np.pi

# Plot data.
u = np.cos(data)
v = np.sin(data)
ax.quiver(x, y, u, v, headlength=0.01, headaxislength=0, pivot='middle', units='xy')

# Create a smaller grid within.
x1, y1 = np.meshgrid(np.linspace(-6, 5, 20), np.linspace(-4, 8, 25))
# ax.plot(x1, y1, '.', color='red', markersize=2)

# Prepare data.
data = np.unwrap(2 * data) / 2

# Interpolate data on grid.
interpolation = griddata((x.flatten(), y.flatten()), data.flatten(), (x1.flatten(), y1.flatten()))

# Plot interpolated data.
u1 = np.cos(interpolation)
v1 = np.sin(interpolation)
ax.quiver(x1, y1, u1, v1, headlength=0.01, headaxislength=0, pivot='middle', units='xy',
          scale=3, width=0.03, color='red')

plt.show()

要在 circular quantities 上正确操作,请在调用 griddata 之前将角度转换为复数,然后再转换回角度:

c=np.exp(2j*data)  # 0,pi -> 1
# …
a=np.angle(interpolation)/2

2 的因数将 [0,π) 扩散到整个圆圈,然后再扩散回来。请注意,调用 angle 中隐含的归一化对输入数据的一个“网格单元格”内变化太大的输入非常敏感。