具有距离阈值停止准则的编辑距离矩阵的单链聚类

Single linkage clustering of edit distance matrix with distance threshold stopping criterion

我正在尝试将平坦的单链接簇分配给由编辑距离 < n 分隔的序列 ID,给定方形距离矩阵。我相信 scipy.cluster.hierarchy.fclusterdata()criterion='distance' 可能是一种方法,但它并没有完全返回我对这个玩具示例所期望的集群。

具体来说,在下面的 4x4 距离矩阵示例中,我希望 clusters_50(使用 t=50)创建 2 个聚类,实际上它找到了 3 个聚类。我认为问题在于 fclusterdata() 不期望距离矩阵,但是 fcluster() 似乎也没有做我想要的。

我也看过 sklearn.cluster.AgglomerativeClustering 但这需要指定 n_clusters,我想根据需要创建尽可能多的集群,直到满足我指定的距离阈值。

我看到有一个 当前未合并 scikit-learn 拉取这个确切功能的请求:https://github.com/scikit-learn/scikit-learn/pull/9069

谁能指出我正确的方向?使用绝对距离阈值标准进行聚类似乎是一个常见的用例。

import pandas as pd
from scipy.cluster.hierarchy import fclusterdata

cols = ['a', 'b', 'c', 'd']

df = pd.DataFrame([{'a': 0, 'b': 29467, 'c': 35, 'd': 13},
                   {'a': 29467, 'b': 0, 'c': 29468, 'd': 29470},
                   {'a': 35, 'b': 29468, 'c': 0, 'd': 38},
                   {'a': 13, 'b': 29470, 'c': 38, 'd': 0}],
                  index=cols)

clusters_20 = fclusterdata(df.values, t=20, criterion='distance')
clusters_50 = fclusterdata(df.values, t=50, criterion='distance')
clusters_100 = fclusterdata(df.values, t=100, criterion='distance')

names_clusters_20 = {n: c for n, c in zip(cols, clusters_20)}
names_clusters_50 = {n: c for n, c in zip(cols, clusters_50)}
names_clusters_100 = {n: c for n, c in zip(cols, clusters_100)}
names_clusters_20  # Expecting 3 clusters, finds 3
>>> {'a': 1, 'b': 3, 'c': 2, 'd': 1}

names_clusters_50  # Expecting 2 clusters, finds 3
>>> {'a': 1, 'b': 3, 'c': 2, 'd': 1}

names_clusters_100 # Expecting 2 clusters, finds 2
>>> {'a': 1, 'b': 2, 'c': 1, 'd': 1}

通过将 linkage() 传递给 fcluster() 解决了这个问题,它支持 metric='precomputed'fclusterdata() 不同。

fcluster(linkage(condensed_dm, metric='precomputed'), criterion='distance', t=20)

解决方案:

import pandas as pd
from scipy.spatial.distance import squareform
from scipy.cluster.hierarchy import linkage, fcluster

cols = ['a', 'b', 'c', 'd']

df = pd.DataFrame([{'a': 0, 'b': 29467, 'c': 35, 'd': 13},
                   {'a': 29467, 'b': 0, 'c': 29468, 'd': 29470},
                   {'a': 35, 'b': 29468, 'c': 0, 'd': 38},
                   {'a': 13, 'b': 29470, 'c': 38, 'd': 0}],
                  index=cols)

dm_cnd = squareform(df.values)

clusters_20 = fcluster(linkage(dm_cnd, metric='precomputed'), criterion='distance', t=20)
clusters_50 = fcluster(linkage(dm_cnd, metric='precomputed'), criterion='distance', t=50)
clusters_100 = fcluster(linkage(dm_cnd, metric='precomputed'), criterion='distance', t=100)

names_clusters_20 = {n: c for n, c in zip(cols, clusters_20)}
names_clusters_50 = {n: c for n, c in zip(cols, clusters_50)}
names_clusters_100 = {n: c for n, c in zip(cols, clusters_100)}
names_clusters_20
>>> {'a': 1, 'b': 3, 'c': 2, 'd': 1}

names_clusters_50
>>> {'a': 1, 'b': 2, 'c': 1, 'd': 1}

names_clusters_100
>>> {'a': 1, 'b': 2, 'c': 1, 'd': 1}

作为函数:

import pandas as pd
from scipy.spatial.distance import squareform
from scipy.cluster.hierarchy import fcluster, linkage

def cluster_df(df, method='single', threshold=100):
    '''
    Accepts a square distance matrix as an indexed DataFrame and returns a dict of index keyed flat clusters 
    Performs single linkage clustering by default, see scipy.cluster.hierarchy.linkage docs for others
    '''

    dm_cnd = squareform(df.values)
    clusters = fcluster(linkage(dm_cnd,
                                method=method,
                                metric='precomputed'),
                        criterion='distance',
                        t=threshold)
    names_clusters = {s:c for s, c in zip(df.columns, clusters)}
return names_clusters

您没有设置公制参数。

然后默认为 metric='euclidean',而不是 预先计算的