多尺度模板匹配不正确
Multi-Scale template Matching doesn't work right
我通过查看 this article 实时完成了多尺度模板匹配。当模板出现在框架中时,它会检测到它并在其周围绘制一个边界框,这意味着它可以正常工作。 但是当框架中也没有模板时,它会检测某处并绘制边界框。我会提到我发现的代码和错误。
import cv2 as cv2
import numpy as np
import imutils
def main():
template1 = cv2.imread("C:\Users\Manthika\Desktop\opencvtest\template.jpg")
template1 = cv2.cvtColor(template1, cv2.COLOR_BGR2GRAY)
template1 = cv2.Canny(template1, 50, 200)
template = imutils.resize(template1, width=60)
(tH, tW) = template.shape[:2]
cv2.imshow("Template", template)
windowName = "Something"
cv2.namedWindow(windowName)
cap = cv2.VideoCapture(0)
if cap.isOpened():
ret, frame = cap.read()
else:
ret = False
# loop over the frames to find the template
while ret:
# load the image, convert it to grayscale, and initialize the
# bookkeeping variable to keep track of the matched region
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
found = None
# loop over the scales of the image
for scale in np.linspace(0.2, 1.0, 20)[::-1]:
# resize the image according to the scale, and keep track
# of the ratio of the resizing
resized = imutils.resize(gray, width=int(gray.shape[1] * scale))
r = gray.shape[1] / float(resized.shape[1])
# if the resized image is smaller than the template, then break
# from the loop
if resized.shape[0] < tH or resized.shape[1] < tW:
print("frame is smaller than the template")
break
# detect edges in the resized, grayscale image and apply template
# matching to find the template in the image
edged = cv2.Canny(resized, 50, 200)
result = cv2.matchTemplate(edged, template, cv2.TM_CCOEFF)
(_, maxVal, _, maxLoc) = cv2.minMaxLoc(result)
# if we have found a new maximum correlation value, then update
# the bookkeeping variable
if found is None or maxVal > found[0]:
found = (maxVal, maxLoc, r)
# unpack the bookkeeping variable and compute the (x, y) coordinates
# of the bounding box based on the resized ratio
# print(found)
if found is None:
# just show only the frames if the template is not detected
cv2.imshow(windowName, frame)
print("No template is found")
else:
(_, maxLoc, r) = found
(startX, startY) = (int(maxLoc[0] * r), int(maxLoc[1] * r))
(endX, endY) = (int((maxLoc[0] + tW) * r), int((maxLoc[1] + tH) * r))
print(startX, startY, endX, endY)
# draw a bounding box around the detected result and display the image
cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2)
cv2.imshow(windowName, frame)
if cv2.waitKey(1) == 27:
break
cv2.destroyAllWindows()
cap.release()
if __name__ == "__main__":
main()
我认为问题出在这两行,
if found is None or maxVal > found[0]:
found = (maxVal, maxLoc, r)
找到的变量总是更新为一个值,即使它是 none。我是计算机视觉的新手,所以请善待并帮助我解决这个问题。如果我需要提及任何其他内容,也请告诉我。谢谢。
参考How do I use OpenCV MatchTemplate?:
在您的代码中,您有 (_, maxVal, _, maxLoc) = cv2.minMaxLoc(result)
,它应该是 minVal,maxVal,minLoc,maxLoc = cv.MinMaxLoc(result)
,您需要设置 minVal
的阈值来过滤不匹配的结果。
示例:
# loop over the scales of the image
for scale in np.linspace(0.2, 1.0, 20)[::-1]:
# resize the image according to the scale, and keep track
# of the ratio of the resizing
resized = imutils.resize(gray, width=int(gray.shape[1] * scale))
r = gray.shape[1] / float(resized.shape[1])
# if the resized image is smaller than the template, then break
# from the loop
if resized.shape[0] < tH or resized.shape[1] < tW:
break
# detect edges in the resized, grayscale image and apply template
# matching to find the template in the image
edged = cv2.Canny(resized, 50, 200)
result = cv2.matchTemplate(edged, template, cv2.TM_CCOEFF)
(minVal, maxVal, _, maxLoc) = cv2.minMaxLoc(result)
# if we have found a new maximum correlation value, then ipdate
# the bookkeeping variable
if found is None or maxVal > found[0]:
found = (maxVal, maxLoc, r)
# unpack the bookkeeping varaible and compute the (x, y) coordinates
# of the bounding box based on the resized ratio
(maxVal, maxLoc, r) = found
# Threshold setting, this 11195548 value is tested by some random images
threshold = 11195548
if maxVal > threshold:
print("match found")
(startX, startY) = (int(maxLoc[0] * r), int(maxLoc[1] * r))
(endX, endY) = (int((maxLoc[0] + tW) * r), int((maxLoc[1] + tH) * r))
# draw a bounding box around the detected result and display the image
cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2)
cv2.imshow("Image", image)
cv2.waitKey(0)
else:
print("no match found")
我通过查看 this article 实时完成了多尺度模板匹配。当模板出现在框架中时,它会检测到它并在其周围绘制一个边界框,这意味着它可以正常工作。 但是当框架中也没有模板时,它会检测某处并绘制边界框。我会提到我发现的代码和错误。
import cv2 as cv2
import numpy as np
import imutils
def main():
template1 = cv2.imread("C:\Users\Manthika\Desktop\opencvtest\template.jpg")
template1 = cv2.cvtColor(template1, cv2.COLOR_BGR2GRAY)
template1 = cv2.Canny(template1, 50, 200)
template = imutils.resize(template1, width=60)
(tH, tW) = template.shape[:2]
cv2.imshow("Template", template)
windowName = "Something"
cv2.namedWindow(windowName)
cap = cv2.VideoCapture(0)
if cap.isOpened():
ret, frame = cap.read()
else:
ret = False
# loop over the frames to find the template
while ret:
# load the image, convert it to grayscale, and initialize the
# bookkeeping variable to keep track of the matched region
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
found = None
# loop over the scales of the image
for scale in np.linspace(0.2, 1.0, 20)[::-1]:
# resize the image according to the scale, and keep track
# of the ratio of the resizing
resized = imutils.resize(gray, width=int(gray.shape[1] * scale))
r = gray.shape[1] / float(resized.shape[1])
# if the resized image is smaller than the template, then break
# from the loop
if resized.shape[0] < tH or resized.shape[1] < tW:
print("frame is smaller than the template")
break
# detect edges in the resized, grayscale image and apply template
# matching to find the template in the image
edged = cv2.Canny(resized, 50, 200)
result = cv2.matchTemplate(edged, template, cv2.TM_CCOEFF)
(_, maxVal, _, maxLoc) = cv2.minMaxLoc(result)
# if we have found a new maximum correlation value, then update
# the bookkeeping variable
if found is None or maxVal > found[0]:
found = (maxVal, maxLoc, r)
# unpack the bookkeeping variable and compute the (x, y) coordinates
# of the bounding box based on the resized ratio
# print(found)
if found is None:
# just show only the frames if the template is not detected
cv2.imshow(windowName, frame)
print("No template is found")
else:
(_, maxLoc, r) = found
(startX, startY) = (int(maxLoc[0] * r), int(maxLoc[1] * r))
(endX, endY) = (int((maxLoc[0] + tW) * r), int((maxLoc[1] + tH) * r))
print(startX, startY, endX, endY)
# draw a bounding box around the detected result and display the image
cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2)
cv2.imshow(windowName, frame)
if cv2.waitKey(1) == 27:
break
cv2.destroyAllWindows()
cap.release()
if __name__ == "__main__":
main()
我认为问题出在这两行,
if found is None or maxVal > found[0]:
found = (maxVal, maxLoc, r)
找到的变量总是更新为一个值,即使它是 none。我是计算机视觉的新手,所以请善待并帮助我解决这个问题。如果我需要提及任何其他内容,也请告诉我。谢谢。
参考How do I use OpenCV MatchTemplate?:
在您的代码中,您有 (_, maxVal, _, maxLoc) = cv2.minMaxLoc(result)
,它应该是 minVal,maxVal,minLoc,maxLoc = cv.MinMaxLoc(result)
,您需要设置 minVal
的阈值来过滤不匹配的结果。
示例:
# loop over the scales of the image
for scale in np.linspace(0.2, 1.0, 20)[::-1]:
# resize the image according to the scale, and keep track
# of the ratio of the resizing
resized = imutils.resize(gray, width=int(gray.shape[1] * scale))
r = gray.shape[1] / float(resized.shape[1])
# if the resized image is smaller than the template, then break
# from the loop
if resized.shape[0] < tH or resized.shape[1] < tW:
break
# detect edges in the resized, grayscale image and apply template
# matching to find the template in the image
edged = cv2.Canny(resized, 50, 200)
result = cv2.matchTemplate(edged, template, cv2.TM_CCOEFF)
(minVal, maxVal, _, maxLoc) = cv2.minMaxLoc(result)
# if we have found a new maximum correlation value, then ipdate
# the bookkeeping variable
if found is None or maxVal > found[0]:
found = (maxVal, maxLoc, r)
# unpack the bookkeeping varaible and compute the (x, y) coordinates
# of the bounding box based on the resized ratio
(maxVal, maxLoc, r) = found
# Threshold setting, this 11195548 value is tested by some random images
threshold = 11195548
if maxVal > threshold:
print("match found")
(startX, startY) = (int(maxLoc[0] * r), int(maxLoc[1] * r))
(endX, endY) = (int((maxLoc[0] + tW) * r), int((maxLoc[1] + tH) * r))
# draw a bounding box around the detected result and display the image
cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2)
cv2.imshow("Image", image)
cv2.waitKey(0)
else:
print("no match found")