A星算法中八个方向的这些值是怎么给出的呢?

How did we give these values of the eight directions in A star algorithm?

我正在尝试基于此代码实现我自己的代码。当我阅读这段代码时,我对这部分感到困惑。以下函数的一部分:

def get_motion_model():
    # dx, dy, cost
    motion = [[1, 0, 1],
              [0, 1, 1],
              [-1, 0, 1],
              [0, -1, 1],
              [-1, -1, math.sqrt(2)],
              [-1, 1, math.sqrt(2)],
              [1, -1, math.sqrt(2)],
              [1, 1, math.sqrt(2)]]

    return motion

作者是如何给出这些值的?。我知道我们什么时候开始检查 8 个邻居,但这些数字是多少?我的意思是这些 [1, 0, 1] 等等。如果我想为 3D 生成它们会是什么?

下面是A星算法Python代码:

"""
A* grid based planning
See Wikipedia article (https://en.wikipedia.org/wiki/A*_search_algorithm)
"""

import matplotlib.pyplot as plt
import math

show_animation = True


class Node:

    def __init__(self, x, y, cost, pind):
        self.x = x
        self.y = y
        self.cost = cost
        self.pind = pind

    def __str__(self):
        return str(self.x) + "," + str(self.y) + "," + str(self.cost) + "," + str(self.pind)


def calc_final_path(ngoal, closedset, reso):
    # generate final course
    rx, ry = [ngoal.x * reso], [ngoal.y * reso]
    pind = ngoal.pind
    while pind != -1:
        n = closedset[pind]
        rx.append(n.x * reso)
        ry.append(n.y * reso)
        pind = n.pind

    return rx, ry


def a_star_planning(sx, sy, gx, gy, ox, oy, reso, rr):
    """
    gx: goal x position [m]
    gx: goal x position [m]
    ox: x position list of Obstacles [m]
    oy: y position list of Obstacles [m]
    reso: grid resolution [m]
    rr: robot radius[m]
    """

    nstart = Node(round(sx / reso), round(sy / reso), 0.0, -1)
    ngoal = Node(round(gx / reso), round(gy / reso), 0.0, -1)
    ox = [iox / reso for iox in ox]
    oy = [ioy / reso for ioy in oy]

    obmap, minx, miny, maxx, maxy, xw, yw = calc_obstacle_map(ox, oy, reso, rr)

    motion = get_motion_model()

    openset, closedset = dict(), dict()
    openset[calc_index(nstart, xw, minx, miny)] = nstart

    while 1:
        c_id = min(
            openset, key=lambda o: openset[o].cost + calc_heuristic(ngoal, openset[o]))
        current = openset[c_id]

        # show graph
        if show_animation:  # pragma: no cover
            plt.plot(current.x * reso, current.y * reso, "xc")
            if len(closedset.keys()) % 10 == 0:
                plt.pause(0.001)

        if current.x == ngoal.x and current.y == ngoal.y:
            print("Find goal")
            ngoal.pind = current.pind
            ngoal.cost = current.cost
            break

        # Remove the item from the open set
        del openset[c_id]
        # Add it to the closed set
        closedset[c_id] = current

        # expand search grid based on motion model
        for i, _ in enumerate(motion):
            node = Node(current.x + motion[i][0],
                        current.y + motion[i][1],
                        current.cost + motion[i][2], c_id)
            n_id = calc_index(node, xw, minx, miny)

            if n_id in closedset:
                continue

            if not verify_node(node, obmap, minx, miny, maxx, maxy):
                continue

            if n_id not in openset:
                openset[n_id] = node  # Discover a new node
            else:
                if openset[n_id].cost >= node.cost:
                    # This path is the best until now. record it!
                    openset[n_id] = node

    rx, ry = calc_final_path(ngoal, closedset, reso)

    return rx, ry


def calc_heuristic(n1, n2):
    w = 1.0  # weight of heuristic
    d = w * math.sqrt((n1.x - n2.x)**2 + (n1.y - n2.y)**2)
    return d


def verify_node(node, obmap, minx, miny, maxx, maxy):

    if node.x < minx:
        return False
    elif node.y < miny:
        return False
    elif node.x >= maxx:
        return False
    elif node.y >= maxy:
        return False

    if obmap[node.x][node.y]:
        return False

    return True


def calc_obstacle_map(ox, oy, reso, vr):

    minx = round(min(ox))
    miny = round(min(oy))
    maxx = round(max(ox))
    maxy = round(max(oy))
    #  print("minx:", minx)
    #  print("miny:", miny)
    #  print("maxx:", maxx)
    #  print("maxy:", maxy)

    xwidth = round(maxx - minx)
    ywidth = round(maxy - miny)
    #  print("xwidth:", xwidth)
    #  print("ywidth:", ywidth)

    # obstacle map generation
    obmap = [[False for i in range(ywidth)] for i in range(xwidth)]
    for ix in range(xwidth):
        x = ix + minx
        for iy in range(ywidth):
            y = iy + miny
            #  print(x, y)
            for iox, ioy in zip(ox, oy):
                d = math.sqrt((iox - x)**2 + (ioy - y)**2)
                if d <= vr / reso:
                    obmap[ix][iy] = True
                    break

    return obmap, minx, miny, maxx, maxy, xwidth, ywidth


def calc_index(node, xwidth, xmin, ymin):
    return (node.y - ymin) * xwidth + (node.x - xmin)


def get_motion_model():
    # dx, dy, cost
    motion = [[1, 0, 1],
              [0, 1, 1],
              [-1, 0, 1],
              [0, -1, 1],
              [-1, -1, math.sqrt(2)],
              [-1, 1, math.sqrt(2)],
              [1, -1, math.sqrt(2)],
              [1, 1, math.sqrt(2)]]

    return motion


def main():
    print(__file__ + " start!!")

    # start and goal position
    sx = 10.0  # [m]
    sy = 10.0  # [m]
    gx = 50.0  # [m]
    gy = 50.0  # [m]
    grid_size = 1.0  # [m]
    robot_size = 1.0  # [m]

    ox, oy = [], []

    for i in range(60):
        ox.append(i)
        oy.append(0.0)
    for i in range(60):
        ox.append(60.0)
        oy.append(i)
    for i in range(61):
        ox.append(i)
        oy.append(60.0)
    for i in range(61):
        ox.append(0.0)
        oy.append(i)
    for i in range(40):
        ox.append(20.0)
        oy.append(i)
    for i in range(40):
        ox.append(40.0)
        oy.append(60.0 - i)

    if show_animation:  # pragma: no cover
        plt.plot(ox, oy, ".k")
        plt.plot(sx, sy, "xr")
        plt.plot(gx, gy, "xb")
        plt.grid(True)
        plt.axis("equal")

    rx, ry = a_star_planning(sx, sy, gx, gy, ox, oy, grid_size, robot_size)

    if show_animation:  # pragma: no cover
        plt.plot(rx, ry, "-r")
        plt.show()


if __name__ == '__main__':
    main()

这些行上方的注释给出了线索​​:

# dx, dy, cost

这里的成本显然对应于欧氏距离,即 dx²+dy² 的平方根。

每个三元组代表一个方向:

  • x坐标的变化:可以是-1(向左)、0(不沿X轴移动)、(向右)
  • y坐标上的同步变化:可以是-1(向上),0(不沿y轴移动),1(向下)
  • 此步代表的距离:如果以上两个数字之一为0,则方向为上、下、左、右,距离恰好为1。但如果两个数字都非零,然后我们进行对角线移动(左上、右上、左下、右下),在这种情况下,距离是 2 的平方根。

motion 也可以定义为:

motion = [[
    [dx, dy, math.sqrt(dx*dx+dy*dy)] 
        for dx in ([-1,0,1] if dy else [-1, 1])
] for dy in [-1,0,1]]

注意这个欧几里得距离公式在代码的后面是如何出现的,例如用于计算路径剩余部分的启发式成本,作为当前单元格和目标单元格之间的直线距离。

如果您想使用 3D,那么每个方向将有 4 个值:dx、dy、dz,距离将是 dx²+dy²+dz² 的平方根:

  • 1 如果这三个中只有一个是 1
  • 如果这三个中的两个是 1,则为 2 的平方根
  • 如果三个都非零,则为 3 的平方根