词性分类问题——神经网络不学习
Parts of Speech classification problem - Neural Network not learning
我正在编写一个 NN 来对波兰语词性进行分类。当我启动神经网络时,我注意到权重不断增加并隐藏了错误(成本)达到最大值而不是最小化。
这是我的网络 Class:
import java.io.*;
import java.lang.Math;
import java.util.Random;
import java.text.DecimalFormat;
public class NeuralNetwork {
// constructor generates random weights and trains the neural network
public NeuralNetwork() {
randomise();
System.out.println("The network has been initialized with random weights.");
train();
System.out.println("Weights have been adjusted and the network is trained.\nProceeding to classification.");
}
// format of decimal values to be printed out onto the console
private DecimalFormat df = new DecimalFormat("#.##");
// boolean value - if true print system logs
private boolean printLogs = false;
// maximal accepted length of a word = 30 letters
private double[] input = new double[32 * 32 + 20];
// there are 10 parts of speech in the polish language
private double[] output = new double[10];
// abstract decision to have 20 nodes in the hidden layer -> (30 + 10) / 2
private double[] hiddenLayer = new double[20];
// 20 nodes in hidden layer x 30 input nodes -> each input times it's wieght is an input for each hidden layer node
private double[][] weightsForInput = new double [20][32 * 32 + 20];
// 10 output nodes x 20 hidden layer nodes -> each hidden layer node times it's wieght is an input for each output node
private double[][] weightsForHiddenLayer = new double[10][20];
// learning rate
private double learningRate = 0.1;
public void generateInputFromWord(String word, int placeInSentence, int sentenceLength) {
boolean first;
for (int c = 0; c < word.length(); c++) {
first = true;
for (int x = 0; x < 32; x++) {
if (first && x == convertCharToInt(word.charAt(c)) - 1) {
input[32 * c + x] = 1.;
first = false;
}
}
}
input[32 * 32 + (int) Math.round(20. * (double) placeInSentence / sentenceLength) - 1] = 1.;
}
// creates output where each node = sigmoid(sum(hiddenLayerNode * wieght))
private void generateOutput() {
for(int i = 0; i < output.length; i++) {
double sum = 0;
for(int j = 0; j < hiddenLayer.length; j++) {
sum += hiddenLayer[j] * weightsForHiddenLayer[i][j];
}
output[i] = sigmoid(sum);
}
}
// creates hidden layer where each node = sigmoid(sum(inputNode * weight))
private void generateHiddenLayer() {
for(int i = 0; i < hiddenLayer.length; i++) {
double sum = 0;
for(int j = 0; j < input.length; j++) {
sum += input[j] * weightsForInput[i][j];
}
hiddenLayer[i] = sigmoid(sum);
}
}
// returns an integer from 1 to 32 for each letter of the polish alphabet
private int convertCharToInt(char c){
switch(c){
case 'a': return 1;
case '\u0105': return 2;
case 'b': return 3;
case 'c': return 4;
case '\u0107': return 5;
case 'd': return 6;
case 'e': return 7;
case '\u0119': return 8;
case 'f': return 9;
case 'g': return 10;
case 'h': return 11;
case 'i': return 12;
case 'j': return 13;
case 'k': return 14;
case 'l': return 15;
case '\u0142': return 16;
case 'm': return 17;
case 'n': return 18;
case '\u0144': return 19;
case 'o': return 20;
case '\u00F3': return 21;
case 'p': return 22;
case 'r': return 23;
case 's': return 24;
case '\u015B': return 25;
case 't': return 26;
case 'u': return 27;
case 'w': return 28;
case 'y': return 29;
case 'z': return 30;
case '\u017A': return 31;
case '\u017C': return 32;
default: return 0;
}
}
// populate wieghts and the bias with random values
private void randomise() {
Random random = new Random();
for (int i = 0; i < weightsForInput.length; i++) {
for (int j = 0; j < weightsForInput[0].length; j++) {
weightsForInput[i][j] = random.nextDouble();
}
}
for (int i = 0; i < weightsForHiddenLayer.length; i++) {
for (int j = 0; j < weightsForHiddenLayer[0].length; j++) {
weightsForHiddenLayer[i][j] = random.nextDouble();
}
}
}
// sigmoid function 1 / (1 + e ^ (- x)) returns num in range (0, 1)
private double sigmoid(double input) {
return 1 / (1 + Math.pow(Math.E, - input));
}
// converts PoS String into size[10] array of classification output
private double[] generateExpectedOutput(String input) {
double[] result = new double[10];
switch(input) {
case "RZECZOWNIK":
result[0] = 1;
break;
case "PRZYMIOTNIK":
result[1] = 1;
break;
case "LICZEBNIK":
result[2] = 1;
break;
case "ZAIMEK":
result[3] = 1;
break;
case "CZASOWNIK":
result[4] = 1;
break;
case "PRZYSLOWEK":
result[5] = 1;
break;
case "PRZYIMEK":
result[6] = 1;
break;
case "SPOJNIK":
result[7] = 1;
break;
case "WYKRZYKNIK":
result[8] = 1;
break;
case "PARTYKULA":
result[9] = 1;
break;
}
return result;
}
// convert output array into one of 10 possible parts of speech
private POS getPOSFromOutput() {
int node = 0;
double max = 0;
POS result = POS.RZECZOWNIK;
for(int i = 0; i < output.length; i++) {
if(output[i] > max) {
max = output[i];
node = i;
}
}
switch(node) {
case 0:
result = POS.RZECZOWNIK;
break;
case 1:
result = POS.PRZYMIOTNIK;
break;
case 2:
result = POS.LICZEBNIK;
break;
case 3:
result = POS.ZAIMEK;
break;
case 4:
result = POS.CZASOWNIK;
break;
case 5:
result = POS.PRZYSLOWEK;
break;
case 6:
result = POS.PRZYIMEK;
break;
case 7:
result = POS.SPOJNIK;
break;
case 8:
result = POS.WYKRZYKNIK;
break;
case 9:
result = POS.PARTYKULA;
break;
}
return result;
}
// prints a 1D array onto the console
private void printOneDArray(double[] array, String arrayName) {
System.out.println(arrayName + ":");
for(int i = 0; i < array.length; i++) {
System.out.print(df.format(array[i]) + " ");
}
System.out.println("");
}
// prints a 2D array onto the console
private void printTwoDArray(double[][] array, String arrayName) {
System.out.println(arrayName + ":");
for(int x = 0; x < array.length; x++) {
for(int y = 0; y < array[x].length; y++) {
System.out.print(df.format(array[x][y]) + " ");
}
System.out.println("");
}
System.out.println("");
}
// calculates average error where each output node error = (output - expectedOutput)^2
private double calculateError(double[] expectedOutput) {
double error = 0;
for(int i = 0; i < output.length; i++) {
// calculate sum of quadratic difference
error += Math.pow(expectedOutput[i] - output[i], 2);
}
// average the sum
return error / expectedOutput.length;
}
// calculates new weights for the hidden layer based on current weights and calculated error for a specific training element
private double[][] calculateNewWeightsForHiddenLayer(double[] expectedOutput) {
double[][] newWeights = new double[weightsForHiddenLayer.length][weightsForHiddenLayer[0].length];
for(int i = 0; i < expectedOutput.length; i++) {
for(int x = 0; x < weightsForHiddenLayer.length; x++) {
for(int y =0; y < weightsForHiddenLayer[x].length; y++) {
// derivate (weight * hiddenLayer) in respect to weight * derivative (sigmoid(x)) in respect to x * derivative (output - expectedOutput)^2 in respect to output
newWeights[x][y] += weightsForHiddenLayer[x][y] - learningRate *
hiddenLayer[y] *
(sigmoid(weightsForHiddenLayer[x][y] * hiddenLayer[y]) * (1 - sigmoid(weightsForHiddenLayer[x][y] * hiddenLayer[y]))) *
2 * (expectedOutput[i] - output[i]);
}
}
}
newWeights = calculateAverageArray(newWeights, expectedOutput.length);
return newWeights;
}
// calculates new weights for the input layer based on current weights and calculated error for a specific training element
private double[][] calculateNewWeightsForInput(double[] expectedOutput) {
double[][] newWeights = new double[weightsForInput.length][weightsForInput[0].length];
for(int i = 0; i < expectedOutput.length; i++) {
for(int x = 0; x < weightsForInput.length; x++) {
for(int y = 0; y < weightsForInput[x].length; y++) {
// derivative function
newWeights[x][y] += weightsForInput[x][y] - learningRate *
input[y] *
(sigmoid(weightsForHiddenLayer[i][x] * hiddenLayer[x]) * (1 - sigmoid(weightsForHiddenLayer[i][x] * hiddenLayer[x]))) *
weightsForHiddenLayer[i][x] *
(sigmoid(weightsForInput[x][y] * input[y]) * (1 - sigmoid(weightsForInput[x][y] * input[y]))) *
2 * (expectedOutput[i] - output[i]);
}
}
}
newWeights = calculateAverageArray(newWeights, expectedOutput.length);
return newWeights;
}
// adds two arrays of same size together
private double[][] addArrays(double[][] arrayOne, double arrayTwo[][]) {
double sumArray[][] = new double[arrayOne.length][arrayOne[0].length];
for(int x = 0; x < arrayOne.length; x++) {
for(int y =0; y < arrayOne[x].length; y++) {
sumArray[x][y] = arrayOne[x][y] + arrayTwo[x][y];
}
}
return sumArray;
}
// calculates the average for a layer by dividing each element by the amount of elements used to create sum
private double[][] calculateAverageArray(double[][] array, int counter) {
double[][] averageArray = new double[array.length][array[0].length];
for(int x = 0; x < array.length; x++) {
for(int y= 0; y < array[x].length; y++) {
averageArray[x][y] = array[x][y] / counter;
}
}
return averageArray;
}
// trains the neural network based on a training set in the file training_set.txt
private void train() {
try {
// classification error
double error = 0;
double errorSum = 0;
// count which element is being calculated
int counter = 0;
int counterSum = 0;
// train as long as the error is above 10%
do{
if(printLogs) {
printTwoDArray(weightsForInput, "Weights for input");
printTwoDArray(weightsForHiddenLayer, "Weights for hidden layer");
}
// input file with text to be classified
File file = new File("training_set.txt");
BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(file), "UTF8"));
// input line of text
String line = "";
// reseting counter and error sum (for average error calculation) for each new passage through the training set
counter = 0;
errorSum = 0;
// array with temporary weightsForInput
double[][] tmpInputWeights = new double[20][32 * 32 + 20];
// array for temporary weightsForHiddenLayer
double[][] tmpHiddenLayerWeights = new double[10][20];
// loop to train each element in the training set
while ((line = br.readLine()) != null) {
counter++;
// [0] Word [1] place in sentence [2] sentence length [3] PoS
String[] data = line.split(",");
generateInputFromWord(data[0], Integer.parseInt(data[1]), Integer.parseInt(data[2]));
generateHiddenLayer();
generateOutput();
error = calculateError(generateExpectedOutput(data[3]));
errorSum += error;
if(printLogs) {
System.out.println(counter + " training element: " + data[0] + " " + data[1] + " " + data[2] + " " + data[3]);
printOneDArray(input, "Input layer");
printOneDArray(hiddenLayer, "Hidden layer");
printOneDArray(output, "Output layer");
printOneDArray(generateExpectedOutput(data[3]), "Expected output");
System.out.println("\n" + "Error: " + error + "\n");
}
tmpHiddenLayerWeights = addArrays(tmpHiddenLayerWeights, calculateNewWeightsForHiddenLayer(generateExpectedOutput(data[3])));
tmpInputWeights = addArrays(tmpInputWeights, calculateNewWeightsForInput(generateExpectedOutput(data[3])));
for(int i = 0; i < input.length; i++) {
input[i] = 0;
}
}
counterSum += counter;
br.close();
// calculate average weights
weightsForHiddenLayer = calculateAverageArray(tmpHiddenLayerWeights, counter);
weightsForInput = calculateAverageArray(tmpInputWeights, counter);
// calculate average error over all the training set
errorSum /= counter;
if(printLogs) {
System.out.println("\n" + "Average error: " + errorSum + "\n");
}
} while(errorSum > 0.1);
} catch (Exception e) {
System.out.println("Error - main: " + e.getMessage());
e.printStackTrace();
}
}
// classify a word as one of 10 possible parts of speech
public POS classify(String word, int placeInSentence, int sentenceLength) {
generateInputFromWord( word, placeInSentence, sentenceLength);
generateHiddenLayer();
generateOutput();
return getPOSFromOutput();
}
// get value in output array
public double[] getOutput() {
return output;
}
}
我的训练集样本:
wszyscy,1,7,RZECZOWNIK
jesteśmy,2,7,CZASOWNIK
studentami,3,7,RZECZOWNIK
lub,4,7,SPOJNIK
od,5,7,PRZYIMEK
niedawna,6,7,PRZYSLOWEK
absolwentami,7,7,RZECZOWNIK
反向传播算法是否正确?
我根据整个训练集计算平均权重。
新的权重在这里计算:
private double[][] calculateNewWeightsForHiddenLayer(double[] expectedOutput)
private double[][] calculateNewWeightsForInput(double[] expectedOutput)
在设计神经网络时,一个非常重要的任务是select一组合适的特征,神经网络很容易使用这些特征。
通过将单词的位置编码为与字符本身相同的值,网络将无法学习任何东西,因为这会将许多可能不相关的单词映射到相同的编码。
通过对字符使用单个标量,网络很难区分字符。相反,使用 one-hot 编码可能会表现更好,其中每个字符都表示为一个大部分为零的向量,在与该字符对应的索引处有一个 1。
如果您想在字符级别上工作并包括单词的位置,请使用不同的方式对位置进行编码,例如通过将其编码为一组次级输入,它可以是对应于单词位置的二进制表示的 1 和 0 的向量。
通常,处理自然语言的神经网络使用所谓的词嵌入,其中每个词都映射到一个唯一的向量表示,该表示由该词出现的上下文(例如 word2vec、Glove)决定。
对于词性标注,当前词周围的词也与分类标签相关。一个词可能有不同的标签,这取决于它周围的词,即使这个词在句子中的位置是相同的。这就是为什么基于神经网络的词性标注的常用方法涉及循环神经网络。
我正在编写一个 NN 来对波兰语词性进行分类。当我启动神经网络时,我注意到权重不断增加并隐藏了错误(成本)达到最大值而不是最小化。
这是我的网络 Class:
import java.io.*;
import java.lang.Math;
import java.util.Random;
import java.text.DecimalFormat;
public class NeuralNetwork {
// constructor generates random weights and trains the neural network
public NeuralNetwork() {
randomise();
System.out.println("The network has been initialized with random weights.");
train();
System.out.println("Weights have been adjusted and the network is trained.\nProceeding to classification.");
}
// format of decimal values to be printed out onto the console
private DecimalFormat df = new DecimalFormat("#.##");
// boolean value - if true print system logs
private boolean printLogs = false;
// maximal accepted length of a word = 30 letters
private double[] input = new double[32 * 32 + 20];
// there are 10 parts of speech in the polish language
private double[] output = new double[10];
// abstract decision to have 20 nodes in the hidden layer -> (30 + 10) / 2
private double[] hiddenLayer = new double[20];
// 20 nodes in hidden layer x 30 input nodes -> each input times it's wieght is an input for each hidden layer node
private double[][] weightsForInput = new double [20][32 * 32 + 20];
// 10 output nodes x 20 hidden layer nodes -> each hidden layer node times it's wieght is an input for each output node
private double[][] weightsForHiddenLayer = new double[10][20];
// learning rate
private double learningRate = 0.1;
public void generateInputFromWord(String word, int placeInSentence, int sentenceLength) {
boolean first;
for (int c = 0; c < word.length(); c++) {
first = true;
for (int x = 0; x < 32; x++) {
if (first && x == convertCharToInt(word.charAt(c)) - 1) {
input[32 * c + x] = 1.;
first = false;
}
}
}
input[32 * 32 + (int) Math.round(20. * (double) placeInSentence / sentenceLength) - 1] = 1.;
}
// creates output where each node = sigmoid(sum(hiddenLayerNode * wieght))
private void generateOutput() {
for(int i = 0; i < output.length; i++) {
double sum = 0;
for(int j = 0; j < hiddenLayer.length; j++) {
sum += hiddenLayer[j] * weightsForHiddenLayer[i][j];
}
output[i] = sigmoid(sum);
}
}
// creates hidden layer where each node = sigmoid(sum(inputNode * weight))
private void generateHiddenLayer() {
for(int i = 0; i < hiddenLayer.length; i++) {
double sum = 0;
for(int j = 0; j < input.length; j++) {
sum += input[j] * weightsForInput[i][j];
}
hiddenLayer[i] = sigmoid(sum);
}
}
// returns an integer from 1 to 32 for each letter of the polish alphabet
private int convertCharToInt(char c){
switch(c){
case 'a': return 1;
case '\u0105': return 2;
case 'b': return 3;
case 'c': return 4;
case '\u0107': return 5;
case 'd': return 6;
case 'e': return 7;
case '\u0119': return 8;
case 'f': return 9;
case 'g': return 10;
case 'h': return 11;
case 'i': return 12;
case 'j': return 13;
case 'k': return 14;
case 'l': return 15;
case '\u0142': return 16;
case 'm': return 17;
case 'n': return 18;
case '\u0144': return 19;
case 'o': return 20;
case '\u00F3': return 21;
case 'p': return 22;
case 'r': return 23;
case 's': return 24;
case '\u015B': return 25;
case 't': return 26;
case 'u': return 27;
case 'w': return 28;
case 'y': return 29;
case 'z': return 30;
case '\u017A': return 31;
case '\u017C': return 32;
default: return 0;
}
}
// populate wieghts and the bias with random values
private void randomise() {
Random random = new Random();
for (int i = 0; i < weightsForInput.length; i++) {
for (int j = 0; j < weightsForInput[0].length; j++) {
weightsForInput[i][j] = random.nextDouble();
}
}
for (int i = 0; i < weightsForHiddenLayer.length; i++) {
for (int j = 0; j < weightsForHiddenLayer[0].length; j++) {
weightsForHiddenLayer[i][j] = random.nextDouble();
}
}
}
// sigmoid function 1 / (1 + e ^ (- x)) returns num in range (0, 1)
private double sigmoid(double input) {
return 1 / (1 + Math.pow(Math.E, - input));
}
// converts PoS String into size[10] array of classification output
private double[] generateExpectedOutput(String input) {
double[] result = new double[10];
switch(input) {
case "RZECZOWNIK":
result[0] = 1;
break;
case "PRZYMIOTNIK":
result[1] = 1;
break;
case "LICZEBNIK":
result[2] = 1;
break;
case "ZAIMEK":
result[3] = 1;
break;
case "CZASOWNIK":
result[4] = 1;
break;
case "PRZYSLOWEK":
result[5] = 1;
break;
case "PRZYIMEK":
result[6] = 1;
break;
case "SPOJNIK":
result[7] = 1;
break;
case "WYKRZYKNIK":
result[8] = 1;
break;
case "PARTYKULA":
result[9] = 1;
break;
}
return result;
}
// convert output array into one of 10 possible parts of speech
private POS getPOSFromOutput() {
int node = 0;
double max = 0;
POS result = POS.RZECZOWNIK;
for(int i = 0; i < output.length; i++) {
if(output[i] > max) {
max = output[i];
node = i;
}
}
switch(node) {
case 0:
result = POS.RZECZOWNIK;
break;
case 1:
result = POS.PRZYMIOTNIK;
break;
case 2:
result = POS.LICZEBNIK;
break;
case 3:
result = POS.ZAIMEK;
break;
case 4:
result = POS.CZASOWNIK;
break;
case 5:
result = POS.PRZYSLOWEK;
break;
case 6:
result = POS.PRZYIMEK;
break;
case 7:
result = POS.SPOJNIK;
break;
case 8:
result = POS.WYKRZYKNIK;
break;
case 9:
result = POS.PARTYKULA;
break;
}
return result;
}
// prints a 1D array onto the console
private void printOneDArray(double[] array, String arrayName) {
System.out.println(arrayName + ":");
for(int i = 0; i < array.length; i++) {
System.out.print(df.format(array[i]) + " ");
}
System.out.println("");
}
// prints a 2D array onto the console
private void printTwoDArray(double[][] array, String arrayName) {
System.out.println(arrayName + ":");
for(int x = 0; x < array.length; x++) {
for(int y = 0; y < array[x].length; y++) {
System.out.print(df.format(array[x][y]) + " ");
}
System.out.println("");
}
System.out.println("");
}
// calculates average error where each output node error = (output - expectedOutput)^2
private double calculateError(double[] expectedOutput) {
double error = 0;
for(int i = 0; i < output.length; i++) {
// calculate sum of quadratic difference
error += Math.pow(expectedOutput[i] - output[i], 2);
}
// average the sum
return error / expectedOutput.length;
}
// calculates new weights for the hidden layer based on current weights and calculated error for a specific training element
private double[][] calculateNewWeightsForHiddenLayer(double[] expectedOutput) {
double[][] newWeights = new double[weightsForHiddenLayer.length][weightsForHiddenLayer[0].length];
for(int i = 0; i < expectedOutput.length; i++) {
for(int x = 0; x < weightsForHiddenLayer.length; x++) {
for(int y =0; y < weightsForHiddenLayer[x].length; y++) {
// derivate (weight * hiddenLayer) in respect to weight * derivative (sigmoid(x)) in respect to x * derivative (output - expectedOutput)^2 in respect to output
newWeights[x][y] += weightsForHiddenLayer[x][y] - learningRate *
hiddenLayer[y] *
(sigmoid(weightsForHiddenLayer[x][y] * hiddenLayer[y]) * (1 - sigmoid(weightsForHiddenLayer[x][y] * hiddenLayer[y]))) *
2 * (expectedOutput[i] - output[i]);
}
}
}
newWeights = calculateAverageArray(newWeights, expectedOutput.length);
return newWeights;
}
// calculates new weights for the input layer based on current weights and calculated error for a specific training element
private double[][] calculateNewWeightsForInput(double[] expectedOutput) {
double[][] newWeights = new double[weightsForInput.length][weightsForInput[0].length];
for(int i = 0; i < expectedOutput.length; i++) {
for(int x = 0; x < weightsForInput.length; x++) {
for(int y = 0; y < weightsForInput[x].length; y++) {
// derivative function
newWeights[x][y] += weightsForInput[x][y] - learningRate *
input[y] *
(sigmoid(weightsForHiddenLayer[i][x] * hiddenLayer[x]) * (1 - sigmoid(weightsForHiddenLayer[i][x] * hiddenLayer[x]))) *
weightsForHiddenLayer[i][x] *
(sigmoid(weightsForInput[x][y] * input[y]) * (1 - sigmoid(weightsForInput[x][y] * input[y]))) *
2 * (expectedOutput[i] - output[i]);
}
}
}
newWeights = calculateAverageArray(newWeights, expectedOutput.length);
return newWeights;
}
// adds two arrays of same size together
private double[][] addArrays(double[][] arrayOne, double arrayTwo[][]) {
double sumArray[][] = new double[arrayOne.length][arrayOne[0].length];
for(int x = 0; x < arrayOne.length; x++) {
for(int y =0; y < arrayOne[x].length; y++) {
sumArray[x][y] = arrayOne[x][y] + arrayTwo[x][y];
}
}
return sumArray;
}
// calculates the average for a layer by dividing each element by the amount of elements used to create sum
private double[][] calculateAverageArray(double[][] array, int counter) {
double[][] averageArray = new double[array.length][array[0].length];
for(int x = 0; x < array.length; x++) {
for(int y= 0; y < array[x].length; y++) {
averageArray[x][y] = array[x][y] / counter;
}
}
return averageArray;
}
// trains the neural network based on a training set in the file training_set.txt
private void train() {
try {
// classification error
double error = 0;
double errorSum = 0;
// count which element is being calculated
int counter = 0;
int counterSum = 0;
// train as long as the error is above 10%
do{
if(printLogs) {
printTwoDArray(weightsForInput, "Weights for input");
printTwoDArray(weightsForHiddenLayer, "Weights for hidden layer");
}
// input file with text to be classified
File file = new File("training_set.txt");
BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(file), "UTF8"));
// input line of text
String line = "";
// reseting counter and error sum (for average error calculation) for each new passage through the training set
counter = 0;
errorSum = 0;
// array with temporary weightsForInput
double[][] tmpInputWeights = new double[20][32 * 32 + 20];
// array for temporary weightsForHiddenLayer
double[][] tmpHiddenLayerWeights = new double[10][20];
// loop to train each element in the training set
while ((line = br.readLine()) != null) {
counter++;
// [0] Word [1] place in sentence [2] sentence length [3] PoS
String[] data = line.split(",");
generateInputFromWord(data[0], Integer.parseInt(data[1]), Integer.parseInt(data[2]));
generateHiddenLayer();
generateOutput();
error = calculateError(generateExpectedOutput(data[3]));
errorSum += error;
if(printLogs) {
System.out.println(counter + " training element: " + data[0] + " " + data[1] + " " + data[2] + " " + data[3]);
printOneDArray(input, "Input layer");
printOneDArray(hiddenLayer, "Hidden layer");
printOneDArray(output, "Output layer");
printOneDArray(generateExpectedOutput(data[3]), "Expected output");
System.out.println("\n" + "Error: " + error + "\n");
}
tmpHiddenLayerWeights = addArrays(tmpHiddenLayerWeights, calculateNewWeightsForHiddenLayer(generateExpectedOutput(data[3])));
tmpInputWeights = addArrays(tmpInputWeights, calculateNewWeightsForInput(generateExpectedOutput(data[3])));
for(int i = 0; i < input.length; i++) {
input[i] = 0;
}
}
counterSum += counter;
br.close();
// calculate average weights
weightsForHiddenLayer = calculateAverageArray(tmpHiddenLayerWeights, counter);
weightsForInput = calculateAverageArray(tmpInputWeights, counter);
// calculate average error over all the training set
errorSum /= counter;
if(printLogs) {
System.out.println("\n" + "Average error: " + errorSum + "\n");
}
} while(errorSum > 0.1);
} catch (Exception e) {
System.out.println("Error - main: " + e.getMessage());
e.printStackTrace();
}
}
// classify a word as one of 10 possible parts of speech
public POS classify(String word, int placeInSentence, int sentenceLength) {
generateInputFromWord( word, placeInSentence, sentenceLength);
generateHiddenLayer();
generateOutput();
return getPOSFromOutput();
}
// get value in output array
public double[] getOutput() {
return output;
}
}
我的训练集样本:
wszyscy,1,7,RZECZOWNIK
jesteśmy,2,7,CZASOWNIK
studentami,3,7,RZECZOWNIK
lub,4,7,SPOJNIK
od,5,7,PRZYIMEK
niedawna,6,7,PRZYSLOWEK
absolwentami,7,7,RZECZOWNIK
反向传播算法是否正确? 我根据整个训练集计算平均权重。 新的权重在这里计算:
private double[][] calculateNewWeightsForHiddenLayer(double[] expectedOutput)
private double[][] calculateNewWeightsForInput(double[] expectedOutput)
在设计神经网络时,一个非常重要的任务是select一组合适的特征,神经网络很容易使用这些特征。
通过将单词的位置编码为与字符本身相同的值,网络将无法学习任何东西,因为这会将许多可能不相关的单词映射到相同的编码。
通过对字符使用单个标量,网络很难区分字符。相反,使用 one-hot 编码可能会表现更好,其中每个字符都表示为一个大部分为零的向量,在与该字符对应的索引处有一个 1。
如果您想在字符级别上工作并包括单词的位置,请使用不同的方式对位置进行编码,例如通过将其编码为一组次级输入,它可以是对应于单词位置的二进制表示的 1 和 0 的向量。
通常,处理自然语言的神经网络使用所谓的词嵌入,其中每个词都映射到一个唯一的向量表示,该表示由该词出现的上下文(例如 word2vec、Glove)决定。
对于词性标注,当前词周围的词也与分类标签相关。一个词可能有不同的标签,这取决于它周围的词,即使这个词在句子中的位置是相同的。这就是为什么基于神经网络的词性标注的常用方法涉及循环神经网络。