Fast NMS 算法抑制框不重叠

Fast NMS algorithm suppresses boxes without overlap

我正在测试 Fast NMS algorithm by Malisiewicz et al。我注意到 运行 通过示例,在一种情况下,如果我输入两个没有重叠的特定框,并且 IoU 阈值低于大约 0.75,无论如何都会抑制一个框。

我是不是对NMS有误解?我认为如果它们之间的重叠为零,则不应丢弃任何框,无论 IoU 阈值设置在哪里。

示例:

import numpy as np

def non_max_suppression_fast(boxes, overlapThresh):

    # if there are no boxes, return an empty list
    if len(boxes) == 0:
        return []

    # initialize the list of picked indexes
    pick = []

    # grab the coordinates of the bounding boxes
    x1 = boxes[:,0]
    y1 = boxes[:,1]
    x2 = boxes[:,2]
    y2 = boxes[:,3]

    # compute the area of the bounding boxes and sort the bounding
    # boxes by the bottom-right y-coordinate of the bounding box
    area = (x2 - x1 + 1) * (y2 - y1 + 1)

    idxs = np.argsort(y2)

    # keep looping while some indexes still remain in the indexes
    # list
    while len(idxs) > 0:
        # grab the last index in the indexes list and add the
        # index value to the list of picked indexes
        last = len(idxs) - 1
        i = idxs[last]
        pick.append(i)

        # find the largest (x, y) coordinates for the start of
        # the bounding box and the smallest (x, y) coordinates
        # for the end of the bounding box
        xx1 = np.maximum(x1[i], x1[idxs[:last]])
        yy1 = np.maximum(y1[i], y1[idxs[:last]])
        xx2 = np.minimum(x2[i], x2[idxs[:last]])
        yy2 = np.minimum(y2[i], y2[idxs[:last]])

        # compute the width and height of the bounding box
        w = np.maximum(0, xx2 - xx1 + 1)
        h = np.maximum(0, yy2 - yy1 + 1)

        # compute the ratio of overlap
        overlap = (w * h) / area[idxs[:last]]

        # delete all indexes from the index list that have
        idxs = np.delete(idxs, np.concatenate(([last],
            np.where(overlap > overlapThresh)[0])))

    # return only the bounding boxes that were picked
    return boxes[pick]


# Two test boxes
                   #xmin,ymin,xmax,ymax
boxes = np.vstack([[0.3, 0.2, 0.4, 0.5], 
                  [0.1, 0.1, 0.2, 0.2]])


# no box suppression
print(non_max_suppression_fast(boxes, overlapThresh=.75))

# one box is suppressed
print(non_max_suppression_fast(boxes, overlapThresh=.74))

您输入的测试用例不合法,参数 boxes 需要绝对格式的框坐标,例如在像素坐标中。

大家可以注意到,在计算所有方框的面积时,都是

area = (x2 - x1 + 1) * (y2 - y1 + 1)

+1是添加的像素,确保area是方框实际占用的像素数。

试试这个:

boxes = np.vstack([[3, 2, 4, 5], 
              [1, 1, 2, 2]])