Fast NMS 算法抑制框不重叠
Fast NMS algorithm suppresses boxes without overlap
我正在测试 Fast NMS algorithm by Malisiewicz et al。我注意到 运行 通过示例,在一种情况下,如果我输入两个没有重叠的特定框,并且 IoU 阈值低于大约 0.75,无论如何都会抑制一个框。
我是不是对NMS有误解?我认为如果它们之间的重叠为零,则不应丢弃任何框,无论 IoU 阈值设置在哪里。
示例:
import numpy as np
def non_max_suppression_fast(boxes, overlapThresh):
# if there are no boxes, return an empty list
if len(boxes) == 0:
return []
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]
# compute the area of the bounding boxes and sort the bounding
# boxes by the bottom-right y-coordinate of the bounding box
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(y2)
# keep looping while some indexes still remain in the indexes
# list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked
return boxes[pick]
# Two test boxes
#xmin,ymin,xmax,ymax
boxes = np.vstack([[0.3, 0.2, 0.4, 0.5],
[0.1, 0.1, 0.2, 0.2]])
# no box suppression
print(non_max_suppression_fast(boxes, overlapThresh=.75))
# one box is suppressed
print(non_max_suppression_fast(boxes, overlapThresh=.74))
您输入的测试用例不合法,参数 boxes
需要绝对格式的框坐标,例如在像素坐标中。
大家可以注意到,在计算所有方框的面积时,都是
area = (x2 - x1 + 1) * (y2 - y1 + 1)
+1
是添加的像素,确保area
是方框实际占用的像素数。
试试这个:
boxes = np.vstack([[3, 2, 4, 5],
[1, 1, 2, 2]])
我正在测试 Fast NMS algorithm by Malisiewicz et al。我注意到 运行 通过示例,在一种情况下,如果我输入两个没有重叠的特定框,并且 IoU 阈值低于大约 0.75,无论如何都会抑制一个框。
我是不是对NMS有误解?我认为如果它们之间的重叠为零,则不应丢弃任何框,无论 IoU 阈值设置在哪里。
示例:
import numpy as np
def non_max_suppression_fast(boxes, overlapThresh):
# if there are no boxes, return an empty list
if len(boxes) == 0:
return []
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]
# compute the area of the bounding boxes and sort the bounding
# boxes by the bottom-right y-coordinate of the bounding box
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(y2)
# keep looping while some indexes still remain in the indexes
# list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked
return boxes[pick]
# Two test boxes
#xmin,ymin,xmax,ymax
boxes = np.vstack([[0.3, 0.2, 0.4, 0.5],
[0.1, 0.1, 0.2, 0.2]])
# no box suppression
print(non_max_suppression_fast(boxes, overlapThresh=.75))
# one box is suppressed
print(non_max_suppression_fast(boxes, overlapThresh=.74))
您输入的测试用例不合法,参数 boxes
需要绝对格式的框坐标,例如在像素坐标中。
大家可以注意到,在计算所有方框的面积时,都是
area = (x2 - x1 + 1) * (y2 - y1 + 1)
+1
是添加的像素,确保area
是方框实际占用的像素数。
试试这个:
boxes = np.vstack([[3, 2, 4, 5],
[1, 1, 2, 2]])