在 R 中使用插入符号训练后如何计算 ROC 下的 ROC 和 AUC?
How to compute ROC and AUC under ROC after training using caret in R?
我已经使用了 caret
包的 train
函数和 10 折交叉验证。我还通过在 trControl
中设置 classProbs = TRUE
获得了预测 classes 的 class 概率,如下所示:
myTrainingControl <- trainControl(method = "cv",
number = 10,
savePredictions = TRUE,
classProbs = TRUE,
verboseIter = TRUE)
randomForestFit = train(x = input[3:154],
y = as.factor(input$Target),
method = "rf",
trControl = myTrainingControl,
preProcess = c("center","scale"),
ntree = 50)
我得到的输出预测如下。
pred obs 0 1 rowIndex mtry Resample
1 0 1 0.52 0.48 28 12 Fold01
2 0 0 0.58 0.42 43 12 Fold01
3 0 1 0.58 0.42 51 12 Fold01
4 0 0 0.68 0.32 55 12 Fold01
5 0 0 0.62 0.38 59 12 Fold01
6 0 1 0.92 0.08 71 12 Fold01
现在我想用这个数据计算ROC下的ROC和AUC。我将如何实现这一目标?
AUC 示例:
rf_output=randomForest(x=predictor_data, y=target, importance = TRUE, ntree = 10001, proximity=TRUE, sampsize=sampsizes)
library(ROCR)
predictions=as.vector(rf_output$votes[,2])
pred=prediction(predictions,target)
perf_AUC=performance(pred,"auc") #Calculate the AUC value
AUC=perf_AUC@y.values[[1]]
perf_ROC=performance(pred,"tpr","fpr") #plot the actual ROC curve
plot(perf_ROC, main="ROC plot")
text(0.5,0.5,paste("AUC = ",format(AUC, digits=5, scientific=FALSE)))
或使用pROC
和caret
library(caret)
library(pROC)
data(iris)
iris <- iris[iris$Species == "virginica" | iris$Species == "versicolor", ]
iris$Species <- factor(iris$Species) # setosa should be removed from factor
samples <- sample(NROW(iris), NROW(iris) * .5)
data.train <- iris[samples, ]
data.test <- iris[-samples, ]
forest.model <- train(Species ~., data.train)
result.predicted.prob <- predict(forest.model, data.test, type="prob") # Prediction
result.roc <- roc(data.test$Species, result.predicted.prob$versicolor) # Draw ROC curve.
plot(result.roc, print.thres="best", print.thres.best.method="closest.topleft")
result.coords <- coords(result.roc, "best", best.method="closest.topleft", ret=c("threshold", "accuracy"))
print(result.coords)#to get threshold and accuracy
2019 年更新。这就是 MLeval 的编写目的 (https://cran.r-project.org/web/packages/MLeval/index.html),它与 Caret 火车输出对象一起制作 ROC、PR 曲线、校准曲线,并计算指标,例如 ROC-AUC ,敏感性,特异性等。它只用一根线就完成了所有这些,这对我的分析很有帮助,可能会让人感兴趣。
library(caret)
library(MLeval)
myTrainingControl <- trainControl(method = "cv",
number = 10,
savePredictions = TRUE,
classProbs = TRUE,
verboseIter = TRUE)
randomForestFit = train(x = Sonar[,1:60],
y = as.factor(Sonar$Class),
method = "rf",
trControl = myTrainingControl,
preProcess = c("center","scale"),
ntree = 50)
##
x <- evalm(randomForestFit)
## get roc curve plotted in ggplot2
x$roc
## get AUC and other metrics
x$stdres
我已经使用了 caret
包的 train
函数和 10 折交叉验证。我还通过在 trControl
中设置 classProbs = TRUE
获得了预测 classes 的 class 概率,如下所示:
myTrainingControl <- trainControl(method = "cv",
number = 10,
savePredictions = TRUE,
classProbs = TRUE,
verboseIter = TRUE)
randomForestFit = train(x = input[3:154],
y = as.factor(input$Target),
method = "rf",
trControl = myTrainingControl,
preProcess = c("center","scale"),
ntree = 50)
我得到的输出预测如下。
pred obs 0 1 rowIndex mtry Resample
1 0 1 0.52 0.48 28 12 Fold01
2 0 0 0.58 0.42 43 12 Fold01
3 0 1 0.58 0.42 51 12 Fold01
4 0 0 0.68 0.32 55 12 Fold01
5 0 0 0.62 0.38 59 12 Fold01
6 0 1 0.92 0.08 71 12 Fold01
现在我想用这个数据计算ROC下的ROC和AUC。我将如何实现这一目标?
AUC 示例:
rf_output=randomForest(x=predictor_data, y=target, importance = TRUE, ntree = 10001, proximity=TRUE, sampsize=sampsizes)
library(ROCR)
predictions=as.vector(rf_output$votes[,2])
pred=prediction(predictions,target)
perf_AUC=performance(pred,"auc") #Calculate the AUC value
AUC=perf_AUC@y.values[[1]]
perf_ROC=performance(pred,"tpr","fpr") #plot the actual ROC curve
plot(perf_ROC, main="ROC plot")
text(0.5,0.5,paste("AUC = ",format(AUC, digits=5, scientific=FALSE)))
或使用pROC
和caret
library(caret)
library(pROC)
data(iris)
iris <- iris[iris$Species == "virginica" | iris$Species == "versicolor", ]
iris$Species <- factor(iris$Species) # setosa should be removed from factor
samples <- sample(NROW(iris), NROW(iris) * .5)
data.train <- iris[samples, ]
data.test <- iris[-samples, ]
forest.model <- train(Species ~., data.train)
result.predicted.prob <- predict(forest.model, data.test, type="prob") # Prediction
result.roc <- roc(data.test$Species, result.predicted.prob$versicolor) # Draw ROC curve.
plot(result.roc, print.thres="best", print.thres.best.method="closest.topleft")
result.coords <- coords(result.roc, "best", best.method="closest.topleft", ret=c("threshold", "accuracy"))
print(result.coords)#to get threshold and accuracy
2019 年更新。这就是 MLeval 的编写目的 (https://cran.r-project.org/web/packages/MLeval/index.html),它与 Caret 火车输出对象一起制作 ROC、PR 曲线、校准曲线,并计算指标,例如 ROC-AUC ,敏感性,特异性等。它只用一根线就完成了所有这些,这对我的分析很有帮助,可能会让人感兴趣。
library(caret)
library(MLeval)
myTrainingControl <- trainControl(method = "cv",
number = 10,
savePredictions = TRUE,
classProbs = TRUE,
verboseIter = TRUE)
randomForestFit = train(x = Sonar[,1:60],
y = as.factor(Sonar$Class),
method = "rf",
trControl = myTrainingControl,
preProcess = c("center","scale"),
ntree = 50)
##
x <- evalm(randomForestFit)
## get roc curve plotted in ggplot2
x$roc
## get AUC and other metrics
x$stdres