"ValueError: Unknown layer: ... " when calling copy.deepcopy(network) using Tensorflow
"ValueError: Unknown layer: ... " when calling copy.deepcopy(network) using Tensorflow
我目前正在 Tensorflow 中设计一个 NoisyNet,我需要为其定义一个自定义层。复制包含该自定义层的模型时,python 会引发错误 ValueError: Unknown layer: NoisyLayer
。提供层的实现 .
目标是复制一个网络创建它的第二个实例。为此,我使用命令 net_copy = copy.deepcopy(net_original)
,只要我不在要复制的模型中包含上面提到的自定义层,它就可以工作。
我看到为了保存和加载,存在一种指定自定义属性(例如自定义图层)的方法,但我找不到适用于 copy.deepcopy()
的类似命令,其中副本是通过 [=16] 导入的=].
我在 Python3 中使用 Tensorflow 1.12.0。
同样,自定义图层在上面的link下提供。
使用自定义层的网络如下所示:
class Network:
def __init__(self, actionspace_size, learning_rate, gradient_momentum, gradient_min):
frames_input = keras.layers.Input((84, 84, 4))
actions_input = keras.layers.Input((actionspace_size,))
conv1 = keras.layers.Conv2D(16, (8, 8), strides=(4, 4), activation="relu")(frames_input)
conv2 = keras.layers.Conv2D(32, (4, 4), strides=(2, 2), activation="relu")(conv1)
flattened = keras.layers.Flatten()(conv2)
# NoisyNet
hidden = NoisyLayer(activation=tf.nn.relu)(inputs=flattened, resample_noise_flag=True)
output = NoisyLayer(in_shape=(1,256), out_units=actionspace_size)(inputs=hidden, resample_noise_flag=True)
filtered_output = keras.layers.merge.Multiply()([output, actions_input])
self.model = keras.models.Model(inputs=[frames_input, actions_input], outputs=filtered_output)
self.model.compile(loss='mse', optimizer=keras.optimizers.RMSprop(lr=learning_rate, rho=gradient_momentum, epsilon=gradient_min))
调用时
q_net = Network(actionspace_size, learning_rate, gradient_momentum, gradient_min).
target_net = copy.deepcopy(q_net)
出现以下错误:
Traceback (most recent call last):
File "DQN_tf_NoisyNet.py", line 315, in <module>
main()
File "DQN_tf_NoisyNet.py", line 252, in main
target_net = copy.deepcopy(q_net)
File "/usr/lib/python3.5/copy.py", line 182, in deepcopy
y = _reconstruct(x, rv, 1, memo)
File "/usr/lib/python3.5/copy.py", line 299, in _reconstruct
y.__setstate__(state)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/network.py", line 1266, in __setstate__
model = saving.unpickle_model(state)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/saving.py", line 435, in unpickle_model
return _deserialize_model(f)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/saving.py", line 225, in _deserialize_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/saving.py", line 458, in model_from_config
return deserialize(config, custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 145, in deserialize_keras_object
list(custom_objects.items())))
File "/usr/local/lib/python3.5/dist-packages/keras/engine/network.py", line 1022, in from_config
process_layer(layer_data)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/network.py", line 1008, in process_layer
custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 138, in deserialize_keras_object
': ' + class_name)
ValueError: Unknown layer: NoisyLayer
我知道网络本身不是问题(深度复制方法也不是),因为一旦我用标准密集层替换 NoisyLayers(自定义),两者都可以正常工作。
有谁知道如何复制包含自定义层的 Tensorflow 模型?提前致谢!
找到解决方案:
同样,问题是 Tensorflow/Keras 不知道如何解释自定义图层。因此,要提供如何解释层的信息,可以使用 Keras 的 CustomObjectScope
并在该范围内复制模型,如下所示:
# Import
import copy
from keras.utils import CustomObjectScope
# Copy
with CustomObjectScope({"MyCustomLayer":MyCustomLayer}):
model_copy = copy.deepcopy(model)
这会处理复制部分。但是,只要没有将自定义输入指定为自定义层构造函数的参数 (__init(...)
),这只会开箱即用。
我猜这是因为在幕后 copy() 函数似乎暂时保存然后使用一些 pickle
功能再次加载原始模型,这样就必须声明值进一步 constructor-parameters 以及以下内容:
如果自定义 class 的开头如下所示,其中 output_dim
是上面提到的自定义参数之一:
class MyCustomLayer(keras.layers.Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(MyCustomLayer, self).__init__(**kwargs)
然后必须向 class MyCustomLayer
添加一个函数,该函数还负责使自定义构造函数参数持久保存和加载(复制时):
def get_config(self):
config = super(MyCustomLayer, self).get_config()
# Specify here all the values for the constructor's parameters
config['output_dim'] = self.output_dim
return config
这两个步骤解决了我的问题。
我目前正在 Tensorflow 中设计一个 NoisyNet,我需要为其定义一个自定义层。复制包含该自定义层的模型时,python 会引发错误 ValueError: Unknown layer: NoisyLayer
。提供层的实现
目标是复制一个网络创建它的第二个实例。为此,我使用命令 net_copy = copy.deepcopy(net_original)
,只要我不在要复制的模型中包含上面提到的自定义层,它就可以工作。
我看到为了保存和加载,存在一种指定自定义属性(例如自定义图层)的方法,但我找不到适用于 copy.deepcopy()
的类似命令,其中副本是通过 [=16] 导入的=].
我在 Python3 中使用 Tensorflow 1.12.0。
同样,自定义图层在上面的link下提供。 使用自定义层的网络如下所示:
class Network:
def __init__(self, actionspace_size, learning_rate, gradient_momentum, gradient_min):
frames_input = keras.layers.Input((84, 84, 4))
actions_input = keras.layers.Input((actionspace_size,))
conv1 = keras.layers.Conv2D(16, (8, 8), strides=(4, 4), activation="relu")(frames_input)
conv2 = keras.layers.Conv2D(32, (4, 4), strides=(2, 2), activation="relu")(conv1)
flattened = keras.layers.Flatten()(conv2)
# NoisyNet
hidden = NoisyLayer(activation=tf.nn.relu)(inputs=flattened, resample_noise_flag=True)
output = NoisyLayer(in_shape=(1,256), out_units=actionspace_size)(inputs=hidden, resample_noise_flag=True)
filtered_output = keras.layers.merge.Multiply()([output, actions_input])
self.model = keras.models.Model(inputs=[frames_input, actions_input], outputs=filtered_output)
self.model.compile(loss='mse', optimizer=keras.optimizers.RMSprop(lr=learning_rate, rho=gradient_momentum, epsilon=gradient_min))
调用时
q_net = Network(actionspace_size, learning_rate, gradient_momentum, gradient_min).
target_net = copy.deepcopy(q_net)
出现以下错误:
Traceback (most recent call last):
File "DQN_tf_NoisyNet.py", line 315, in <module>
main()
File "DQN_tf_NoisyNet.py", line 252, in main
target_net = copy.deepcopy(q_net)
File "/usr/lib/python3.5/copy.py", line 182, in deepcopy
y = _reconstruct(x, rv, 1, memo)
File "/usr/lib/python3.5/copy.py", line 299, in _reconstruct
y.__setstate__(state)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/network.py", line 1266, in __setstate__
model = saving.unpickle_model(state)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/saving.py", line 435, in unpickle_model
return _deserialize_model(f)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/saving.py", line 225, in _deserialize_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/saving.py", line 458, in model_from_config
return deserialize(config, custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 145, in deserialize_keras_object
list(custom_objects.items())))
File "/usr/local/lib/python3.5/dist-packages/keras/engine/network.py", line 1022, in from_config
process_layer(layer_data)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/network.py", line 1008, in process_layer
custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 138, in deserialize_keras_object
': ' + class_name)
ValueError: Unknown layer: NoisyLayer
我知道网络本身不是问题(深度复制方法也不是),因为一旦我用标准密集层替换 NoisyLayers(自定义),两者都可以正常工作。
有谁知道如何复制包含自定义层的 Tensorflow 模型?提前致谢!
找到解决方案:
同样,问题是 Tensorflow/Keras 不知道如何解释自定义图层。因此,要提供如何解释层的信息,可以使用 Keras 的 CustomObjectScope
并在该范围内复制模型,如下所示:
# Import
import copy
from keras.utils import CustomObjectScope
# Copy
with CustomObjectScope({"MyCustomLayer":MyCustomLayer}):
model_copy = copy.deepcopy(model)
这会处理复制部分。但是,只要没有将自定义输入指定为自定义层构造函数的参数 (__init(...)
),这只会开箱即用。
我猜这是因为在幕后 copy() 函数似乎暂时保存然后使用一些 pickle
功能再次加载原始模型,这样就必须声明值进一步 constructor-parameters 以及以下内容:
如果自定义 class 的开头如下所示,其中 output_dim
是上面提到的自定义参数之一:
class MyCustomLayer(keras.layers.Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(MyCustomLayer, self).__init__(**kwargs)
然后必须向 class MyCustomLayer
添加一个函数,该函数还负责使自定义构造函数参数持久保存和加载(复制时):
def get_config(self):
config = super(MyCustomLayer, self).get_config()
# Specify here all the values for the constructor's parameters
config['output_dim'] = self.output_dim
return config
这两个步骤解决了我的问题。