使用 nls() 的非线性拟合在初始参数估计时为我提供了奇异梯度矩阵。为什么?

Non-linear fitting with nls() is giving me singular gradient matrix at initial parameter estimates. Why?

这是我第一次尝试在 R 中拟合非线性模型,所以请多多包涵。

问题

我想了解为什么 nls() 给我这个错误:

Error in nlsModel(formula, mf, start, wts): singular gradient matrix at initial parameter estimates

假设

从我在 SO 的其他问题中读到的内容来看,这可能是因为:

因此,我正在寻求有关如何克服此错误的帮助。我可以更改模型并仍然使用 nls(),还是我需要使用 minpack.lm 包中的 nls.lm,正如我在其他地方读到的那样?

我的做法

以下是有关模型的一些详细信息:

显示问题的 MWE

MWE代码的简单解释

代码

step_fn <- function(x, min = 0, max = 1) {

  y <- x
  y[x > min & x <= max] <- 1
  y[x <= min] <- 0
  y[x > max] <- 0

  return(y)
}

staircase <- function(x, dx, dy) {

  max <- cumsum(dx)
  min <- c(0, max[1:(length(dx)-1)])
  step <- cumsum(dy)

  purrr::reduce(purrr::pmap(list(min, max, step), ~ ..3 * step_fn(x, min = ..1, max = ..2)), `+`)
}


staircase_formula <- function(n = 1L) {

  i <- seq_len(n)
  dx <- sprintf("dx%d", i)

  min <-
    c('0', purrr::accumulate(dx[-n], .f = ~ paste(.x, .y, sep = " + ")))
  max <- purrr::accumulate(dx, .f = ~ paste(.x, .y, sep = " + "))

  lhs <- "y"
  rhs <-
    paste(glue::glue('dy{i} * step_fn(x, min = {min}, max = {max})'),
          collapse  = " + ")

  sc_form <- as.formula(glue::glue("{lhs} ~ {rhs}")) 

  return(sc_form)
}


x <- seq(0, 10, by = 0.01)
y <- staircase(x, c(1,2,2,5), c(2,5,2,1)) + rnorm(length(x), mean = 0, sd = 0.2)

plot(x = x, y = y)
lines(x = x, y = staircase(x, dx = c(1,2,2,5), dy = c(2,5,2,1)), col="red")


my_data <- data.frame(x = x, y = y)
my_model <- staircase_formula(4)
params <- list(dx1 = 1, dx2 = 2, dx3 = 2, dx4 = 5,
               dy1 = 2, dy2 = 5, dy3 = 2, dy4 = 1)

m <- nls(formula = my_model, start = params, data = my_data)
#> Error in nlsModel(formula, mf, start, wts): singular gradient matrix at initial parameter estimates

非常感谢任何帮助。

改用 DE:

library(NMOF)
 yf= function(params,x){
   dx1 = params[1]; dx2 = params[2]; dx3 = params[3]; dx4 = params[4];
   dy1 = params[5]; dy2 = params[6]; dy3 = params[7]; dy4 = params[8]
   dy1 * step_fn(x, min = 0, max = dx1) + dy2 * step_fn(x, min = dx1, 
               max = dx1 + dx2) + dy3 * step_fn(x, min = dx1 + dx2, max = dx1 + 
               dx2 + dx3) + dy4 * step_fn(x, min = dx1 + dx2 + dx3, max = dx1 + 
               dx2 + dx3 + dx4)
 }

 algo1 <- list(printBar = FALSE,
               nP  = 200L,
               nG  = 1000L,
               F   = 0.50,
               CR  = 0.99,
               min = c(0,1,1,4,1,4,1,0),
               max = c(2,3,3,6,3,6,3,2))

 OF2 <- function(Param, data) { #Param=paramsj data=data2
   x <- data$x
   y <- data$y
   ye <- data$model(Param,x)
   aux <- y - ye; aux <- sum(aux^2)
   if (is.na(aux)) aux <- 1e10
   aux
 }

 data5 <- list(x = x, y = y,  model = yf, ww = 1)
 system.time(sol5 <- DEopt(OF = OF2, algo = algo1, data = data5))
 sol5$xbest
 OF2(sol5$xbest,data5)

 plot(x,y)
 lines(data5$x,data5$model(sol5$xbest, data5$x),col=7,lwd=2)

#>  sol5$xbest
#[1]   1.106396  12.719182  -9.574088  18.017527   3.366852   8.721374 -19.879474   1.090023
#>  OF2(sol5$xbest,data5)
#[1] 1000.424

我假设您得到了一个长度为 len 的观察向量,如示例中绘制的那样,并且您希望识别 k 跳跃和 k 跳跃大小。 (或者也许我误解了你;但你并没有真正说出你想要达到的目标。) 下面我将概述使用本地搜索的解决方案。我从您的示例数据开始:

x <- seq(0, 10, by = 0.01)
y <- staircase(x,
               c(1,2,2,5),
               c(2,5,2,1)) + rnorm(length(x), mean = 0, sd = 0.2)

一个解决方案是位置大小跳跃的列表。请注意,我使用向量来存储这些数据,因为当你有 20 次跳跃时,定义变量会变得很麻烦。

示例(随机)解决方案:

k <- 5   ## number of jumps
len <- length(x)

sol <- list(position = sample(len, size = k),
            size = runif(k))

## $position
## [1]  89 236 859 885 730
## 
## $size
## [1] 0.2377453 0.2108495 0.3404345 0.4626004 0.6944078

我们需要一个 objective 函数来计算解决方案的质量。我还定义了一个简单的辅助函数 stairs,它由 objective 函数使用。 objective 函数 abs_diff 计算拟合序列(由解定义)和 y.

之间的平均绝对差
stairs <- function(len, position, size) {
    ans <- numeric(len)
    ans[position] <- size
    cumsum(ans)
}

abs_diff <- function(sol, y, stairs, ...) {
    yy <- stairs(length(y), sol$position, sol$size)
    sum(abs(y - yy))/length(y)
}

现在是本地搜索的关键组成部分:用于改进解决方案的邻域函数。 neighborhood 函数采用一个解决方案并稍微改变它。在这里,它将选择 positionsize 并稍微修改它。

neighbour <- function(sol, len, ...) {
    p <- sol$position
    s <- sol$size

    if (runif(1) > 0.5) {
        ## either move one of the positions ...
        i <- sample.int(length(p),  size = 1)
        p[i] <- p[i] + sample(-25:25, size = 1)
        p[i] <- min(max(1, p[i]), len)        
    } else {
        ## ... or change a jump size
        i <- sample.int(length(s), size = 1)
        s[i] <- s[i] + runif(1, min = -s[i], max = 1)
    }

    list(position = p, size = s)
}

调用示例:此处新解决方案的第一个跳跃大小已更改。

## > sol
## $position
## [1]  89 236 859 885 730
## 
## $size
## [1] 0.2377453 0.2108495 0.3404345 0.4626004 0.6944078
## 
## > neighbour(sol, len)
## $position
## [1]  89 236 859 885 730
## 
## $size
## [1] 0.2127044 0.2108495 0.3404345 0.4626004 0.6944078

我仍然使用 运行 本地搜索。

library("NMOF")
sol.ls <- LSopt(abs_diff,
                list(x0 = sol, nI = 50000, neighbour = neighbour),
                stairs = stairs,
                len = len,
                y = y)

我们可以绘制解决方案:拟合线显示为蓝色。

plot(x, y)
lines(x, stairs(len, sol.ls$xbest$position, sol.ls$xbest$size),
      col = "blue", type = "S")