tf.keras.layers.Conv2D() 不适用于 Keras 后端设置为 float16

tf.keras.layers.Conv2D() is not working with Keras backend set to float16

我正在尝试在 Google Colab 中训练 CNN(也尝试使用 Tesla v100),将 keras 后端设置为 float16。

tf.keras.backend.set_floatx('float16')

但在使用 Conv2D 编译模型时会抛出错误。

    model = tf.keras.models.Sequential([
      tf.keras.layers.Conv2D(16,(3,3), activation='relu', input_shape=(300,300,3)),
      tf.keras.layers.MaxPool2D(2,2),
      tf.keras.layers.Dense(256, activation='relu'),
      tf.keras.layers.Dropout(.5),
      tf.keras.layers.Dense(128, activation='relu'),
      tf.keras.layers.Dropout(.5),
      tf.keras.layers.Dense(1, activation='sigmoid')
    ])

    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])

错误信息:

    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-9-c764c0cc3aa3> in <module>()
          9 ])
         10 
    ---> 11 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])

    7 frames
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/checkpointable/base.py in _method_wrapper(self, *args, **kwargs)
        440     self._setattr_tracking = False  # pylint: disable=protected-access
        441     try:
    --> 442       method(self, *args, **kwargs)
        443     finally:
        444       self._setattr_tracking = previous_value  # pylint: disable=protected-access

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, weighted_metrics, target_tensors, distribute, **kwargs)
        447             else:
        448               weighted_loss = training_utils.weighted_masked_objective(loss_fn)
    --> 449               output_loss = weighted_loss(y_true, y_pred, sample_weight, mask)
        450 
        451           if len(self.outputs) > 1:

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training_utils.py in weighted(y_true, y_pred, weights, mask)
        674       score_array = math_ops.reduce_sum(score_array)
        675       weights = math_ops.reduce_sum(weights)
    --> 676       score_array = math_ops.div_no_nan(score_array, weights)
        677     return K.mean(score_array)
        678 

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
        178     """Call target, and fall back on dispatchers if there is a TypeError."""
        179     try:
    --> 180       return target(*args, **kwargs)
        181     except (TypeError, ValueError):
        182       # Note: convert_to_eager_tensor currently raises a ValueError, not a

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py in div_no_nan(x, y, name)
       1025       raise TypeError("x and y must have the same dtype, got %r != %r" %
       1026                       (x_dtype, y_dtype))
    -> 1027     return gen_math_ops.div_no_nan(x, y, name=name)
       1028 
       1029 

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_math_ops.py in div_no_nan(x, y, name)
       3020   # Add nodes to the TensorFlow graph.
       3021   _, _, _op = _op_def_lib._apply_op_helper(
    -> 3022         "DivNoNan", x=x, y=y, name=name)
       3023   _result = _op.outputs[:]
       3024   _inputs_flat = _op.inputs

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py in _apply_op_helper(self, op_type_name, name, **keywords)
        608               _SatisfiesTypeConstraint(base_type,
        609                                        _Attr(op_def, input_arg.type_attr),
    --> 610                                        param_name=input_name)
        611             attrs[input_arg.type_attr] = attr_value
        612             inferred_from[input_arg.type_attr] = input_name

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py in _SatisfiesTypeConstraint(dtype, attr_def, param_name)
         58           "allowed values: %s" %
         59           (param_name, dtypes.as_dtype(dtype).name,
    ---> 60            ", ".join(dtypes.as_dtype(x).name for x in allowed_list)))
         61 
         62 

    TypeError: Value passed to parameter 'x' has DataType float16 not in list of allowed values: float32, float64

然而,当我删除卷积层时,它可以毫无问题地编译模型。

    model = tf.keras.models.Sequential([
       tf.keras.layers.Dense(256, activation='relu'),
       tf.keras.layers.Dropout(.5),
       tf.keras.layers.Dense(128, activation='relu'),
       tf.keras.layers.Dropout(.5),
       tf.keras.layers.Dense(1, activation='sigmoid')
    ])

    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])

因此机器显然能够处理 float16,是否需要对 Keras 做任何特殊的事情才能使 Conv2D 在 float16 中工作?

这似乎已在 最新的 tf-nightly 版本中修复。
我能够使用 TensorFlow 版本 '1.14.1-dev20190520'
成功执行您的代码 为终端安装 tf-nightly:
pip install tf-nightly
为 google colab 安装 tf-nightly:
!pip install tf-nightly