如何使用多个 groupby 列从 OHLC 数据计算数据透视值

How to calculate pivot value from OHLC data with multiple groupby column

我有一个 pandas 数据集,其中包含开盘价、最高价、最低价、收盘价、key1 和 key2 列。现在我想按 key1 和 key2 对数据集进行分组,并使用公式 - (high + low + close) / 3 计算 pivot。至此我可以做到。但要求是将计算的数据转移到我无法编码的下一组。

我能够按 key1 和 key2 列对数据集进行分组,并能够通过以下代码计算数据透视数据,但无法在下一组中移动值。

import pandas as pd

data = pd.DataFrame([[110, 115, 105, 111, 1, 2],[11, 16, 6, 12, 1, 2],[12, 17, 7, 13, 1, 3],[22, 25, 17, 20, 1, 3],[12, 16, 6, 11, 2, 4],[32, 36, 26, 28, 2, 4],[9, 13, 4, 13, 2, 5],[49, 53, 40, 45, 2, 5],[13, 18, 9, 12, 3, 6],[14, 16, 10, 13, 3, 6]], columns=["open","high","low","close","key1", "key2"])
s = (data.high.groupby([data.key1, data.key2]).max() + data.low.groupby([data.key1, data.key2]).min() + data.close.groupby([data.key1, data.key2]).last()) / 3
#data['pivot'] = data['key1', 'key2'].map(s.shift())
print(data)

当我使用下面的代码时,

import pandas as pd

data = pd.DataFrame([[110, 115, 105, 111, 1, 2],[11, 16, 6, 12, 1, 2],[12, 17, 7, 13, 1, 3],[22, 25, 17, 20, 1, 3],[12, 16, 6, 11, 2, 4],[32, 36, 26, 28, 2, 4],[9, 13, 4, 13, 2, 5],[49, 53, 40, 45, 2, 5],[13, 18, 9, 12, 3, 6],[14, 16, 10, 13, 3, 6]], columns=["open","high","low","close","key1", "key2"])
data['pivot'] = (data.high.groupby([data.key1, data.key2]).transform('max') + data.low.groupby([data.key1, data.key2]).transform('min') + data.close.groupby([data.key1, data.key2]).transform('last')) / 3
print(data)

我低于输出。

   open  high  low  close  key1  key2      pivot
0   110   115  105    111     1     2  44.333333
1    11    16    6     12     1     2  44.333333
2    12    17    7     13     1     3  17.333333
3    22    25   17     20     1     3  17.333333
4    12    16    6     11     2     4  23.333333
5    32    36   26     28     2     4  23.333333
6     9    13    4     13     2     5  34.000000
7    49    53   40     45     2     5  34.000000
8    13    18    9     12     3     6  13.333333
9    14    16   10     13     3     6  13.333333

但预期输出:

   open  high  low  close  key1  key2     pivot
0   110   115  105    111     1     2      NaN
1    11    16    6     12     1     2      NaN
2    12    17    7     13     1     3   44.333333
3    22    25   17     20     1     3   44.333333
4    12    16    6     11     2     4   17.333333
5    32    36   26     28     2     4   17.333333
6     9    13    4     13     2     5   23.333333
7    49    53   40     45     2     5   23.333333
8    13    18    9     12     3     6   34.000000
9    14    16   10     13     3     6   34.000000

首先将聚合函数与字典一起使用,然后 GroupBy.agg and then for new column DataFrame.joinshift:

s = data.groupby(['key1','key2']).agg({'low':'min','high':'max','close':'last'}).sum(axis=1)/3

data = data.join(s.rename('pivot').shift(), on=['key1','key2'])
print (data)
   open  high  low  close  key1  key2      pivot
0   110   115  105    111     1     2        NaN
1    11    16    6     12     1     2        NaN
2    12    17    7     13     1     3  44.333333
3    22    25   17     20     1     3  44.333333
4    12    16    6     11     2     4  17.333333
5    32    36   26     28     2     4  17.333333
6     9    13    4     13     2     5  23.333333
7    49    53   40     45     2     5  23.333333
8    13    18    9     12     3     6  34.000000
9    14    16   10     13     3     6  34.000000