我可以针对 `caret` 中的中值相对绝对误差进行优化吗?
Can I optimize for median relative absolute error in `caret`?
我在插入符号中有一个 KNN 模型,我想针对中值相对绝对误差进行优化。
library(caret)
model <- train(
close_price~ ., data = train.data, method = "knn",
trControl = trainControl("cv", number = 10),
preProcess = c("center", "scale"),
metric = "MdRAE",
tuneLength = 10
)
我尝试使用 MdRAE
和 MDRAE
,但它们都返回了这个错误。
Warning message:
In train.default(x, y, weights = w, ...) :
The metric "MdRAE" was not in the result set. RMSE will be used instead
是否有所有可用指标的列表?我在 caret ebook.
中找不到它
此指标未直接在 caret
中实现,但您可以轻松地自己实现:
mdrae_summary <- function(data, lev=NULL, model=NULL) {
c(MdRAE=median(abs(data$pred - data$obs)/data$obs))
}
model <- train(
close_price~ ., data = train.data, method = "knn",
trControl = trainControl("cv", number = 10, summaryFunction = mdrae_summary),
preProcess = c("center", "scale"),
metric = "MdRAE",
tuneLength = 10
)
我在插入符号中有一个 KNN 模型,我想针对中值相对绝对误差进行优化。
library(caret)
model <- train(
close_price~ ., data = train.data, method = "knn",
trControl = trainControl("cv", number = 10),
preProcess = c("center", "scale"),
metric = "MdRAE",
tuneLength = 10
)
我尝试使用 MdRAE
和 MDRAE
,但它们都返回了这个错误。
Warning message:
In train.default(x, y, weights = w, ...) :
The metric "MdRAE" was not in the result set. RMSE will be used instead
是否有所有可用指标的列表?我在 caret ebook.
中找不到它此指标未直接在 caret
中实现,但您可以轻松地自己实现:
mdrae_summary <- function(data, lev=NULL, model=NULL) {
c(MdRAE=median(abs(data$pred - data$obs)/data$obs))
}
model <- train(
close_price~ ., data = train.data, method = "knn",
trControl = trainControl("cv", number = 10, summaryFunction = mdrae_summary),
preProcess = c("center", "scale"),
metric = "MdRAE",
tuneLength = 10
)