根据数值变量的水平对新因子进行编码
Coding a new factor based on levels of a numeric variable
我正在尝试根据另一列的数值创建一个因子列。这是我的数据的一个子集:
> dput(sample)
structure(list(ID = c(1683L, 1684L, 1684L, 1684L, 1684L, 1685L,
1685L, 1685L, 1685L, 1686L, 1686L, 1686L, 1686L, 30759L, 30759L,
30759L, 30759L, 30760L, 30760L, 30760L, 30760L), Month = structure(c(2L,
2L, 3L, 1L, 2L, 2L, 3L, 1L, 2L, 2L, 3L, 1L, 2L, 2L, 3L, 1L, 2L,
2L, 3L, 1L, 2L), .Label = c("Jun", "Jul", "Aug"), class = "factor"),
Year = c(2018, 2017, 2017, 2018, 2018, 2017, 2017, 2018,
2018, 2017, 2017, 2018, 2018, 2017, 2017, 2018, 2018, 2017,
2017, 2018, 2018), Homerange = c(NA, 27.2850594918174, NA,
NA, NA, NA, 30.52684873837, NA, NA, NA, 30.7069481409563,
10.625864752589, 29.2661529202662, 32.3278427642325, NA,
NA, NA, NA, 33.8586876862157, NA, NA)), out.attrs = list(
dim = c(58L, 4L, 2L), dimnames = list(Var1 = c("Var1= 1657",
"Var1= 1658", "Var1= 1659", "Var1= 1660", "Var1= 1661", "Var1= 1662",
"Var1= 1663", "Var1= 1664", "Var1= 1666", "Var1= 1667", "Var1= 1668",
"Var1= 1669", "Var1= 1670", "Var1= 1671", "Var1= 1672", "Var1= 1673",
"Var1= 1674", "Var1= 1675", "Var1= 1676", "Var1= 1678", "Var1= 1679",
"Var1= 1680", "Var1= 1681", "Var1= 1682", "Var1= 1683", "Var1= 1684",
"Var1= 1685", "Var1= 1686", "Var1=30759", "Var1=30760", "Var1=30761",
"Var1=30762", "Var1=30763", "Var1=30764", "Var1=30765", "Var1=30766",
"Var1=30767", "Var1=30768", "Var1=30769", "Var1=30770", "Var1=30771",
"Var1=30772", "Var1=30773", "Var1=30774", "Var1=30775", "Var1=30776",
"Var1=30777", "Var1=30778", "Var1=30779", "Var1=30780", "Var1=30781",
"Var1=30782", "Var1=30783", "Var1=30784", "Var1=30785", "Var1=30786",
"Var1=30787", "Var1=30788"), Var2 = c("Var2=Jun", "Var2=Jul",
"Var2=Aug", "Var2=Sep"), Var3 = c("Var3=2017", "Var3=2018"
))), row.names = c(315L, 84L, 142L, 258L, 316L, 85L, 143L,
259L, 317L, 86L, 144L, 260L, 318L, 87L, 145L, 261L, 319L, 88L,
146L, 262L, 320L), class = "data.frame")
数字列 "ID" 的值介于 1659-1685 和 30759-30788 之间。我想做的是创建一个因子列 "Type",它有 2 个级别 "V13",对应于 ID 1659-1685,"V16" 对应于 ID 30759-30788。我知道我以前做过,但出于某种原因我不记得是怎么做到的。感谢您的帮助!
假设 ID 1686 是故意不在您的范围内的,您可以试试这个:
library(dplyr)
library(forcats)
df %>%
mutate(type = case_when(between(ID, 1659, 1685) ~ "V13",
between(ID, 30759, 30788) ~ "V16")) %>%
mutate(type = as_factor(type))
# A tibble: 21 x 5
ID Month Year Homerange type
<int> <fct> <dbl> <dbl> <fct>
1 1683 Jul 2018 NA V13
2 1684 Jul 2017 27.3 V13
3 1684 Aug 2017 NA V13
4 1684 Jun 2018 NA V13
5 1684 Jul 2018 NA V13
6 1685 Jul 2017 NA V13
7 1685 Aug 2017 30.5 V13
8 1685 Jun 2018 NA V13
9 1685 Jul 2018 NA V13
10 1686 Jul 2017 NA NA
11 1686 Aug 2017 30.7 NA
12 1686 Jun 2018 10.6 NA
13 1686 Jul 2018 29.3 NA
14 30759 Jul 2017 32.3 V16
15 30759 Aug 2017 NA V16
16 30759 Jun 2018 NA V16
17 30759 Jul 2018 NA V16
18 30760 Jul 2017 NA V16
19 30760 Aug 2017 33.9 V16
20 30760 Jun 2018 NA V16
21 30760 Jul 2018 NA V16
直接基础 R 解决方案将应用 ifelse
。
sample <- transform(sample,
Type=factor(ifelse(ID %in% 1659:1685, "V13",
ifelse(ID %in% 30759:30788, "V16",
NA))))
或者使用 cut
稍微更有效(感谢 @camille):
transform(sample, Type2=cut(sample$ID, c(1659, 1685, 1686, 30788), include.lowest=TRUE,
labels=c("V13", NA, "V16")))
或 data.table::inrange
library(data.table)
sample <- transform(sample,
Type=factor(ifelse(ID %inrange% c(1659, 1685), "V13",
ifelse(ID %inrange% c(30759, 30788), "V16",
NA))))
str(sample)
# 'data.frame': 21 obs. of 5 variables:
# $ ID : int 1683 1684 1684 1684 1684 1685 1685 1685 1685 1686 ...
# $ Month : Factor w/ 3 levels "Jun","Jul","Aug": 2 2 3 1 2 2 3 1 2 2 ...
# $ Year : num 2018 2017 2017 2018 2018 ...
# $ Homerange: num NA 27.3 NA NA NA ...
# $ Type : Factor w/ 2 levels "V13","V16": 1 1 1 1 1 1 1 1 1 NA ...
我正在尝试根据另一列的数值创建一个因子列。这是我的数据的一个子集:
> dput(sample)
structure(list(ID = c(1683L, 1684L, 1684L, 1684L, 1684L, 1685L,
1685L, 1685L, 1685L, 1686L, 1686L, 1686L, 1686L, 30759L, 30759L,
30759L, 30759L, 30760L, 30760L, 30760L, 30760L), Month = structure(c(2L,
2L, 3L, 1L, 2L, 2L, 3L, 1L, 2L, 2L, 3L, 1L, 2L, 2L, 3L, 1L, 2L,
2L, 3L, 1L, 2L), .Label = c("Jun", "Jul", "Aug"), class = "factor"),
Year = c(2018, 2017, 2017, 2018, 2018, 2017, 2017, 2018,
2018, 2017, 2017, 2018, 2018, 2017, 2017, 2018, 2018, 2017,
2017, 2018, 2018), Homerange = c(NA, 27.2850594918174, NA,
NA, NA, NA, 30.52684873837, NA, NA, NA, 30.7069481409563,
10.625864752589, 29.2661529202662, 32.3278427642325, NA,
NA, NA, NA, 33.8586876862157, NA, NA)), out.attrs = list(
dim = c(58L, 4L, 2L), dimnames = list(Var1 = c("Var1= 1657",
"Var1= 1658", "Var1= 1659", "Var1= 1660", "Var1= 1661", "Var1= 1662",
"Var1= 1663", "Var1= 1664", "Var1= 1666", "Var1= 1667", "Var1= 1668",
"Var1= 1669", "Var1= 1670", "Var1= 1671", "Var1= 1672", "Var1= 1673",
"Var1= 1674", "Var1= 1675", "Var1= 1676", "Var1= 1678", "Var1= 1679",
"Var1= 1680", "Var1= 1681", "Var1= 1682", "Var1= 1683", "Var1= 1684",
"Var1= 1685", "Var1= 1686", "Var1=30759", "Var1=30760", "Var1=30761",
"Var1=30762", "Var1=30763", "Var1=30764", "Var1=30765", "Var1=30766",
"Var1=30767", "Var1=30768", "Var1=30769", "Var1=30770", "Var1=30771",
"Var1=30772", "Var1=30773", "Var1=30774", "Var1=30775", "Var1=30776",
"Var1=30777", "Var1=30778", "Var1=30779", "Var1=30780", "Var1=30781",
"Var1=30782", "Var1=30783", "Var1=30784", "Var1=30785", "Var1=30786",
"Var1=30787", "Var1=30788"), Var2 = c("Var2=Jun", "Var2=Jul",
"Var2=Aug", "Var2=Sep"), Var3 = c("Var3=2017", "Var3=2018"
))), row.names = c(315L, 84L, 142L, 258L, 316L, 85L, 143L,
259L, 317L, 86L, 144L, 260L, 318L, 87L, 145L, 261L, 319L, 88L,
146L, 262L, 320L), class = "data.frame")
数字列 "ID" 的值介于 1659-1685 和 30759-30788 之间。我想做的是创建一个因子列 "Type",它有 2 个级别 "V13",对应于 ID 1659-1685,"V16" 对应于 ID 30759-30788。我知道我以前做过,但出于某种原因我不记得是怎么做到的。感谢您的帮助!
假设 ID 1686 是故意不在您的范围内的,您可以试试这个:
library(dplyr)
library(forcats)
df %>%
mutate(type = case_when(between(ID, 1659, 1685) ~ "V13",
between(ID, 30759, 30788) ~ "V16")) %>%
mutate(type = as_factor(type))
# A tibble: 21 x 5
ID Month Year Homerange type
<int> <fct> <dbl> <dbl> <fct>
1 1683 Jul 2018 NA V13
2 1684 Jul 2017 27.3 V13
3 1684 Aug 2017 NA V13
4 1684 Jun 2018 NA V13
5 1684 Jul 2018 NA V13
6 1685 Jul 2017 NA V13
7 1685 Aug 2017 30.5 V13
8 1685 Jun 2018 NA V13
9 1685 Jul 2018 NA V13
10 1686 Jul 2017 NA NA
11 1686 Aug 2017 30.7 NA
12 1686 Jun 2018 10.6 NA
13 1686 Jul 2018 29.3 NA
14 30759 Jul 2017 32.3 V16
15 30759 Aug 2017 NA V16
16 30759 Jun 2018 NA V16
17 30759 Jul 2018 NA V16
18 30760 Jul 2017 NA V16
19 30760 Aug 2017 33.9 V16
20 30760 Jun 2018 NA V16
21 30760 Jul 2018 NA V16
直接基础 R 解决方案将应用 ifelse
。
sample <- transform(sample,
Type=factor(ifelse(ID %in% 1659:1685, "V13",
ifelse(ID %in% 30759:30788, "V16",
NA))))
或者使用 cut
稍微更有效(感谢 @camille):
transform(sample, Type2=cut(sample$ID, c(1659, 1685, 1686, 30788), include.lowest=TRUE,
labels=c("V13", NA, "V16")))
或 data.table::inrange
library(data.table)
sample <- transform(sample,
Type=factor(ifelse(ID %inrange% c(1659, 1685), "V13",
ifelse(ID %inrange% c(30759, 30788), "V16",
NA))))
str(sample)
# 'data.frame': 21 obs. of 5 variables:
# $ ID : int 1683 1684 1684 1684 1684 1685 1685 1685 1685 1686 ...
# $ Month : Factor w/ 3 levels "Jun","Jul","Aug": 2 2 3 1 2 2 3 1 2 2 ...
# $ Year : num 2018 2017 2017 2018 2018 ...
# $ Homerange: num NA 27.3 NA NA NA ...
# $ Type : Factor w/ 2 levels "V13","V16": 1 1 1 1 1 1 1 1 1 NA ...