使用索引 1D 数组切片 2D 数组
Slicing a 2D array using indices 1D array
我有一个 (10,24) 的二维数组和一个 (10,) 形状的一维数组。
我想使用 1D 数组对 2D 数组进行切片,这样我的结果数组将是 (10,24),但是值是从 1D 数组 onwards.
中的索引切片的
import numpy as np
x1 = np.random.randint(1,20,10)
print(x1)
[ 8, 13, 13, 13, 14, 3, 14, 14, 11, 16]
y1 = np.random.randint(low = 1, high = 999, size = 240).reshape(10,24)
print(y1)
[[152 128 251 282 334 776 650 247 990 803 700 323 250 262 552 220 744 50
684 695 600 293 138 5]
[830 917 148 612 801 746 623 794 435 469 610 598 29 452 188 688 364 56
246 991 554 33 716 712]
[603 16 838 65 312 764 676 392 187 476 878 229 555 558 58 194 565 764
48 579 447 202 81 300]
[315 562 276 993 859 145 82 484 134 59 397 566 573 263 340 465 728 406
767 408 294 115 394 941]
[422 891 475 174 720 672 526 52 938 347 114 613 186 151 925 482 315 373
856 155 5 60 65 746]
[978 621 543 785 663 32 817 497 615 897 713 459 396 154 220 221 171 589
571 587 248 668 413 553]
[227 188 4 874 975 586 93 179 356 740 645 723 558 814 64 922 748 457
249 688 799 239 708 516]
[230 556 563 55 390 666 304 661 218 744 502 720 418 581 839 772 818 278
190 997 553 71 897 909]
[631 928 606 111 927 912 81 38 529 956 759 6 725 325 944 174 62 804
82 358 305 291 454 34]
[193 661 452 54 816 251 750 183 60 563 787 283 599 182 823 546 629 527
667 614 615 3 790 124]]
我希望我的结果数组是:
[[990 803 700 323 250 262 552 220 744 50 684 695 600 293 138 5 0 0 0 0 0 0 0 0]
[452 188 688 364 56 246 991 554 33 716 712 0 0 0 0 0 0 0 0 0 0 0 0 0]
[558 58 194 565 764 48 579 447 202 81 300 0 0 0 0 0 0 0 0 0 0 0 0 0]
[263 340 465 728 406 767 408 294 115 394 941 0 0 0 0 0 0 0 0 0 0 0 0 0]
[925 482 315 373 856 155 5 60 65 746 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[785 663 32 817 497 615 897 713 459 396 154 220 221 171 589 571 587 248 668 413 553 0 0 0]
[64 922 748 457 249 688 799 239 708 516 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
[839 772 818 278 190 997 553 71 897 909 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[6 725 325 944 174 62 804 82 358 305 291 454 34 0 0 0 0 0 0 0 0 0 0 0 ]
[546 629 527 667 614 615 3 790 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]
我认为您不能在用 0 填充时对数组进行切片。您可以创建一个空的 zeros 数组并填充它,例如
y1_result = np.zeros(y1.shape)
for row, x_i in enumerate(x):
for j, element in enumerate(y1[row, x_i:]):
y1_result[row, j] = element
这是一个向量化的 masking
并且还利用了 broadcasting
-
def select_gt_indices(a, idx):
r = np.arange(a.shape[1])
select_mask = idx[:,None] <= r
put_mask = (a.shape[1]-idx-1)[:,None] >= r
# or put_mask = np.sort(select_mask,axis=1)[:,::-1]
out = np.zeros_like(a)
out[put_mask] = a[select_mask]
return out
样本运行-
In [92]: np.random.seed(0)
...: a = np.random.randint(0,999,(4,5))
...: idx = np.array([2,4,3,0])
In [93]: a
Out[93]:
array([[684, 559, 629, 192, 835],
[763, 707, 359, 9, 723],
[277, 754, 804, 599, 70],
[472, 600, 396, 314, 705]])
In [94]: idx
Out[94]: array([2, 4, 3, 0])
In [95]: select_gt_indices(a, idx)
Out[95]:
array([[629, 192, 835, 0, 0],
[723, 0, 0, 0, 0],
[599, 70, 0, 0, 0],
[472, 600, 396, 314, 705]])
我有一个 (10,24) 的二维数组和一个 (10,) 形状的一维数组。 我想使用 1D 数组对 2D 数组进行切片,这样我的结果数组将是 (10,24),但是值是从 1D 数组 onwards.
中的索引切片的import numpy as np
x1 = np.random.randint(1,20,10)
print(x1)
[ 8, 13, 13, 13, 14, 3, 14, 14, 11, 16]
y1 = np.random.randint(low = 1, high = 999, size = 240).reshape(10,24)
print(y1)
[[152 128 251 282 334 776 650 247 990 803 700 323 250 262 552 220 744 50
684 695 600 293 138 5]
[830 917 148 612 801 746 623 794 435 469 610 598 29 452 188 688 364 56
246 991 554 33 716 712]
[603 16 838 65 312 764 676 392 187 476 878 229 555 558 58 194 565 764
48 579 447 202 81 300]
[315 562 276 993 859 145 82 484 134 59 397 566 573 263 340 465 728 406
767 408 294 115 394 941]
[422 891 475 174 720 672 526 52 938 347 114 613 186 151 925 482 315 373
856 155 5 60 65 746]
[978 621 543 785 663 32 817 497 615 897 713 459 396 154 220 221 171 589
571 587 248 668 413 553]
[227 188 4 874 975 586 93 179 356 740 645 723 558 814 64 922 748 457
249 688 799 239 708 516]
[230 556 563 55 390 666 304 661 218 744 502 720 418 581 839 772 818 278
190 997 553 71 897 909]
[631 928 606 111 927 912 81 38 529 956 759 6 725 325 944 174 62 804
82 358 305 291 454 34]
[193 661 452 54 816 251 750 183 60 563 787 283 599 182 823 546 629 527
667 614 615 3 790 124]]
我希望我的结果数组是:
[[990 803 700 323 250 262 552 220 744 50 684 695 600 293 138 5 0 0 0 0 0 0 0 0]
[452 188 688 364 56 246 991 554 33 716 712 0 0 0 0 0 0 0 0 0 0 0 0 0]
[558 58 194 565 764 48 579 447 202 81 300 0 0 0 0 0 0 0 0 0 0 0 0 0]
[263 340 465 728 406 767 408 294 115 394 941 0 0 0 0 0 0 0 0 0 0 0 0 0]
[925 482 315 373 856 155 5 60 65 746 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[785 663 32 817 497 615 897 713 459 396 154 220 221 171 589 571 587 248 668 413 553 0 0 0]
[64 922 748 457 249 688 799 239 708 516 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
[839 772 818 278 190 997 553 71 897 909 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[6 725 325 944 174 62 804 82 358 305 291 454 34 0 0 0 0 0 0 0 0 0 0 0 ]
[546 629 527 667 614 615 3 790 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]
我认为您不能在用 0 填充时对数组进行切片。您可以创建一个空的 zeros 数组并填充它,例如
y1_result = np.zeros(y1.shape)
for row, x_i in enumerate(x):
for j, element in enumerate(y1[row, x_i:]):
y1_result[row, j] = element
这是一个向量化的 masking
并且还利用了 broadcasting
-
def select_gt_indices(a, idx):
r = np.arange(a.shape[1])
select_mask = idx[:,None] <= r
put_mask = (a.shape[1]-idx-1)[:,None] >= r
# or put_mask = np.sort(select_mask,axis=1)[:,::-1]
out = np.zeros_like(a)
out[put_mask] = a[select_mask]
return out
样本运行-
In [92]: np.random.seed(0)
...: a = np.random.randint(0,999,(4,5))
...: idx = np.array([2,4,3,0])
In [93]: a
Out[93]:
array([[684, 559, 629, 192, 835],
[763, 707, 359, 9, 723],
[277, 754, 804, 599, 70],
[472, 600, 396, 314, 705]])
In [94]: idx
Out[94]: array([2, 4, 3, 0])
In [95]: select_gt_indices(a, idx)
Out[95]:
array([[629, 192, 835, 0, 0],
[723, 0, 0, 0, 0],
[599, 70, 0, 0, 0],
[472, 600, 396, 314, 705]])