如何计算c中的逆模幂?
How to calculate inverse modular exponentation in c?
我想取整数的模逆(k≥1)然后将结果乘以另一个整数,如下面的表达式解释:
result=((x^(-k)))*y mod z
我如何实现这个表达式,其中 k≥1?
你需要定义四个函数:
uint64_t modular_exponentiation(uint64_t x, uint64_t y, uint64_t z)
{
uint64_t res = 1;
x = x % z;
while (y > 0)
{
if (y & 1)
res = (res*x) % p;
y = y>>1; // y = y/2
x = (x*x) % z;
}
return res;
}
uint64_t moduloMultiplication(uint64_t a, uint64_t b,uint64_t z)
{
uint64_t res = 0;
a %= z;
while (b)
{
if (b & 1)
res = (res + a) % z;
a = (2 * a) % p;
b >>= 1; // b = b / 2
}
return res;
}
void extendedEuclid(uint64_t A, uint64_t B)
{
uint64_t temp;
if(B == 0)
{
d = A;
x = 1;
y = 0;
}
else
{
extendedEuclid(B,A%B);
temp = x;
x = y;
y = temp - (A/B)*y;
}
}
int modInverse(uint64_t A, uint64_t M)
{
extendedEuclid(A,M);
if (x < 0)
x += M;
return (x);
}
在main()中:
uint64_t result=0x00;
result=modular_exponentiation(x,k,z); // (x^k) mod z
result=modInverse(result,z); // ((x^k)^-1) mod z == x^(-k) mod z
result=moduloMultiplication(result,y,z);// x^(-k) * y mod z
您将需要扩展最大公约数来计算模 z
的 x
的倒数。当 x
和 z
互质时,你有 a * x + b * z = 1 = gcd(x, z)
。因此,a * x = 1 - b * z
或 a * x = 1 mod z
,而 a
是模数 z
中 x
的倒数。
现在您可以用 x^-1 = a mod z
:
计算 result
result = power(a, k) * y % z
用C语言中的普通整数运算,其中power()
是普通整数求幂。
由于此类计算中的系数会很快变得非常大,因此最好使用 ready-made 库(例如 gmp)。
你可以试试mod_inv C函数:
// return a modular multiplicative inverse of n with respect to the modulus.
// return 0 if the linear congruence has no solutions.
unsigned mod_inv(unsigned ra, unsigned rb) {
unsigned rc, sa = 1, sb = 0, sc, i = 0;
if (rb > 1) do {
rc = ra % rb;
sc = sa - (ra / rb) * sb;
sa = sb, sb = sc;
ra = rb, rb = rc;
} while (++i, rc);
sa *= (i *= ra == 1) != 0;
sa += (i & 1) * sb;
return sa;
}
这基本上是标准算法,当n = 1和mod = 0时输出为0,而不是 1,我认为我们没有多少计算可以执行 modulo 0.
The modular multiplicative inverse of an integer N modulo m is an integer n such as the inverse of N modulo m equals n, if a modular inverse exists then it is unique. To calculate the value of the modulo inverse, use the extended euclidean algorithm which finds solutions to the Bezout identity.
用法示例:
#include <assert.h>
int main(void) {
unsigned n, mod, res;
n = 52, mod = 107;
res = mod_inv(n, mod);
assert(res == 35); // 35 is a solution of the linear congruence.
n = 66, mod = 123;
res = mod_inv(n, mod);
assert(res == 0); // 66 does note have an inverse modulo 123.
}
/*
n = 7 and mod = 45 then res = 13 so 1 == ( 13 * 7 ) % 45
n = 52 and mod = 107 then res = 35 so 1 == ( 35 * 52 ) % 107
n = 213 and mod = 155 then res = 147 so 1 == ( 147 * 213 ) % 155
n = 392 and mod = 45 then res = 38 so 1 == ( 38 * 392 ) % 45
n = 687 and mod = 662 then res = 53 so 1 == ( 53 * 687 ) % 662
n = 451 and mod = 799 then res = 512 so 1 == ( 512 * 451 ) % 799
n = 1630 and mod = 259 then res = 167 so 1 == ( 167 * 1630 ) % 259
n = 4277 and mod = 4722 then res = 191 so 1 == ( 191 * 4277 ) % 4722
*/
我想取整数的模逆(k≥1)然后将结果乘以另一个整数,如下面的表达式解释:
result=((x^(-k)))*y mod z
我如何实现这个表达式,其中 k≥1?
你需要定义四个函数:
uint64_t modular_exponentiation(uint64_t x, uint64_t y, uint64_t z)
{
uint64_t res = 1;
x = x % z;
while (y > 0)
{
if (y & 1)
res = (res*x) % p;
y = y>>1; // y = y/2
x = (x*x) % z;
}
return res;
}
uint64_t moduloMultiplication(uint64_t a, uint64_t b,uint64_t z)
{
uint64_t res = 0;
a %= z;
while (b)
{
if (b & 1)
res = (res + a) % z;
a = (2 * a) % p;
b >>= 1; // b = b / 2
}
return res;
}
void extendedEuclid(uint64_t A, uint64_t B)
{
uint64_t temp;
if(B == 0)
{
d = A;
x = 1;
y = 0;
}
else
{
extendedEuclid(B,A%B);
temp = x;
x = y;
y = temp - (A/B)*y;
}
}
int modInverse(uint64_t A, uint64_t M)
{
extendedEuclid(A,M);
if (x < 0)
x += M;
return (x);
}
在main()中:
uint64_t result=0x00;
result=modular_exponentiation(x,k,z); // (x^k) mod z
result=modInverse(result,z); // ((x^k)^-1) mod z == x^(-k) mod z
result=moduloMultiplication(result,y,z);// x^(-k) * y mod z
您将需要扩展最大公约数来计算模 z
的 x
的倒数。当 x
和 z
互质时,你有 a * x + b * z = 1 = gcd(x, z)
。因此,a * x = 1 - b * z
或 a * x = 1 mod z
,而 a
是模数 z
中 x
的倒数。
现在您可以用 x^-1 = a mod z
:
result
result = power(a, k) * y % z
用C语言中的普通整数运算,其中power()
是普通整数求幂。
由于此类计算中的系数会很快变得非常大,因此最好使用 ready-made 库(例如 gmp)。
你可以试试mod_inv C函数:
// return a modular multiplicative inverse of n with respect to the modulus.
// return 0 if the linear congruence has no solutions.
unsigned mod_inv(unsigned ra, unsigned rb) {
unsigned rc, sa = 1, sb = 0, sc, i = 0;
if (rb > 1) do {
rc = ra % rb;
sc = sa - (ra / rb) * sb;
sa = sb, sb = sc;
ra = rb, rb = rc;
} while (++i, rc);
sa *= (i *= ra == 1) != 0;
sa += (i & 1) * sb;
return sa;
}
这基本上是标准算法,当n = 1和mod = 0时输出为0,而不是 1,我认为我们没有多少计算可以执行 modulo 0.
The modular multiplicative inverse of an integer N modulo m is an integer n such as the inverse of N modulo m equals n, if a modular inverse exists then it is unique. To calculate the value of the modulo inverse, use the extended euclidean algorithm which finds solutions to the Bezout identity.
用法示例:
#include <assert.h>
int main(void) {
unsigned n, mod, res;
n = 52, mod = 107;
res = mod_inv(n, mod);
assert(res == 35); // 35 is a solution of the linear congruence.
n = 66, mod = 123;
res = mod_inv(n, mod);
assert(res == 0); // 66 does note have an inverse modulo 123.
}
/*
n = 7 and mod = 45 then res = 13 so 1 == ( 13 * 7 ) % 45
n = 52 and mod = 107 then res = 35 so 1 == ( 35 * 52 ) % 107
n = 213 and mod = 155 then res = 147 so 1 == ( 147 * 213 ) % 155
n = 392 and mod = 45 then res = 38 so 1 == ( 38 * 392 ) % 45
n = 687 and mod = 662 then res = 53 so 1 == ( 53 * 687 ) % 662
n = 451 and mod = 799 then res = 512 so 1 == ( 512 * 451 ) % 799
n = 1630 and mod = 259 then res = 167 so 1 == ( 167 * 1630 ) % 259
n = 4277 and mod = 4722 then res = 191 so 1 == ( 191 * 4277 ) % 4722
*/