R并行中止所有mclapply操作
R parallel abort all mclapply operations
是否可以要求 parallel::mclapply()
在其任何一个过程中遇到错误(例如 stop()
)时尽快放弃所有进一步处理?
标准 mclapply()
调用无法在一个进程出错时终止集群所有进程的评估。这样做的原因是进程在完成之前不会相互通信。
使用 R 包 future 可以实现这样的行为。思路是
- 创建期货并并行评估它们
- 每 2 秒检查一次功能是否已解决为错误
- 如果检测到错误,则终止集群的所有进程
这是如何工作的草图:
library(future)
library(parallel)
library(tools)
parallelLapply <- function(x, fun, checkInterval=2, nProcess=2){
## setup cluster and get process IDs of process in cluster
cl <- makeCluster(spec=nProcess)
pids <- unlist(parLapply(cl=cl, X=1:nProcess, function(x) Sys.getpid()))
plan(cluster, workers=cl)
## create futures and start their evaluation
fList <- lapply(1:2, function(x) futureCall(function(x) try(fun(x), silent=TRUE), list(x=x)))
## check every 2 second whether an error occurred or whether all are resolved
while(TRUE){
Sys.sleep(checkInterval)
## check for errors
errorStatus <- unlist(lapply(fList, function(x)
resolved(x) && class(value(x))=="try-error"))
if(any(unlist(errorStatus))){
lapply(pids, pskill)
results <- NULL
cat("an error occurred in one future: all process of the cluster were killed.\n")
break
}
## check if all resolved without error
allResolved <- all(unlist(lapply(fList, resolved)))
if(allResolved){
results <- lapply(fList, value)
cat("all futures are resolved sucessfully.\n")
break
}
}
results
}
## test 1: early termination because x=1 results in an error.
f1 <- function(x){
if(x==1) stop()
Sys.sleep(15)
x
}
parallelLapply(x=1:5, fun=f1)
# an error occurred in one future: all process of the cluster were killed.
# NULL
## test 2: no error
f2 <- function(x){
Sys.sleep(15)
x
}
parallelLapply(x=1:5, fun=f2)
## all futures are resolved sucessfully.
## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
注:
- 如果传递给
fun
的函数取决于其他参数,则需要进行额外调整。
- 在 Linux 上,为方便起见,可以使用
makeForkCluster()
而不是 makeCluster()
。那么用法更接近于mclapply()
.
以下是丑陋的,但可行。它使用文件系统作为全局共享变量。
options( mc.cores=2 )
if (!exists("touchFile"))
touchFile <- function(filename) { system(paste0("touch ", filename)); }
tfnm <- paste0("mytemporary",as.numeric(Sys.time()))
mfun <- function( i ) {
if (file.exists( tfnm )) stop("done due to process ", i)
message("Mfun(", i,")")
if ( i == 3 ) { message("creating ", tfnm); touchFile(tfnm); stop("goodbye"); }
Sys.sleep( i%%3 )
}
v <- mclapply( 1:10, mfun )
if (file.exists(tfnm)) file.remove(tfnm)
mclapply自己实现会更好
这是 ivo Welch 建议的更简洁版本。请注意,此 不会在发生错误时停止 运行 进程 ,而是 阻止开始新的评估 FUN
.
library(parallel)
mcLapply <- function(X, FUN, ..., mc.preschedule=TRUE,
mc.set.seed=TRUE, mc.silent=FALSE,
mc.cores=getOption("mc.cores", 2L),
mc.cleanup=TRUE, mc.allow.recursive=TRUE,
affinity.list=NULL){
tmpFileName <- tempfile()
fn <- function(X){
if(file.exists(tmpFileName))
return(NA)
o <- try(do.call("FUN", c(X, list(...))), silent=TRUE)
if(class(o)=="try-error"){
file.create(tmpFileName)
}
o
}
ret <- mclapply(X=X, FUN=fn, mc.preschedule=mc.preschedule,
mc.set.seed=mc.set.seed, mc.silent=mc.silent,
mc.cores=mc.cores, mc.cleanup=mc.cleanup,
mc.allow.recursive=mc.allow.recursive,
affinity.list=affinity.list)
if(exists(tmpFileName))
file.remove(tmpFileName)
ret
}
## test 1: early termination because x=1 results in an error.
f1 <- function(x){
if(x==1) stop()
Sys.sleep(1)
x
}
mcLapply(X=1:3, FUN=f1)
## [[1]]
## [1] "Error in FUN(1L) : \n"
## attr(,"class")
## [1] "try-error"
## attr(,"condition")
## <simpleError in FUN(1L): >
##
## [[2]]
## [1] NA
##
## [[3]]
## [1] NA
## test 2: no error
f2 <- function(x, a){
Sys.sleep(1)
x+a
}
mcLapply(X=1:2, FUN=f2, a=10)
## [[1]]
## [1] 11
##
## [[2]]
## [1] 12
还有一种做法: 思路是在#!!
所指的三个地方修改parallel::mclapply()
。新参数 stop.on.error
可用于指定发生错误时是否应停止执行。
library(parallel)
Mclapply <- function (X, FUN, ..., mc.preschedule = TRUE,
mc.set.seed = TRUE, mc.silent = FALSE,
mc.cores = getOption("mc.cores", 2L),
mc.cleanup = TRUE, mc.allow.recursive = TRUE,
affinity.list = NULL, stop.on.error=FALSE)
{
stop.on.error <- stop.on.error[1] #!!
stopifnot(is.logical(stop.on.error)) #!!
cores <- as.integer(mc.cores)
if ((is.na(cores) || cores < 1L) && is.null(affinity.list))
stop("'mc.cores' must be >= 1")
parallel:::.check_ncores(cores)
if (parallel:::isChild() && !isTRUE(mc.allow.recursive))
return(lapply(X = X, FUN = FUN, ...))
if (!is.vector(X) || is.object(X))
X <- as.list(X)
if (!is.null(affinity.list) && length(affinity.list) < length(X))
stop("affinity.list and X must have the same length")
if (mc.set.seed)
mc.reset.stream()
if (length(X) < 2) {
old.aff <- mcaffinity()
mcaffinity(affinity.list[[1]])
res <- lapply(X = X, FUN = FUN, ...)
mcaffinity(old.aff)
return(res)
}
if (length(X) < cores)
cores <- length(X)
if (cores < 2L && is.null(affinity.list))
return(lapply(X = X, FUN = FUN, ...))
jobs <- list()
parallel:::prepareCleanup()
on.exit(parallel:::cleanup(mc.cleanup))
if (!mc.preschedule) {
FUN <- match.fun(FUN)
if (length(X) <= cores && is.null(affinity.list)) {
jobs <- lapply(seq_along(X), function(i) mcparallel(FUN(X[[i]],
...), name = names(X)[i], mc.set.seed = mc.set.seed,
silent = mc.silent))
res <- mccollect(jobs)
if (length(res) == length(X))
names(res) <- names(X)
has.errors <- sum(sapply(res, inherits, "try-error"))
}
else {
sx <- seq_along(X)
res <- vector("list", length(sx))
names(res) <- names(X)
fin <- rep(FALSE, length(X))
if (!is.null(affinity.list)) {
cores <- max(unlist(x = affinity.list, recursive = TRUE))
d0 <- logical(cores)
cpu.map <- lapply(sx, function(i) {
data <- d0
data[as.vector(affinity.list[[i]])] <- TRUE
data
})
ava <- do.call(rbind, cpu.map)
}
else {
ava <- matrix(TRUE, nrow = length(X), ncol = cores)
}
jobid <- integer(cores)
for (i in 1:cores) {
jobid[i] <- match(TRUE, ava[, i])
ava[jobid[i], ] <- FALSE
}
if (anyNA(jobid)) {
unused <- which(is.na(jobid))
jobid <- jobid[-unused]
ava <- ava[, -unused, drop = FALSE]
}
jobs <- lapply(jobid, function(i) mcparallel(FUN(X[[i]],
...), mc.set.seed = mc.set.seed, silent = mc.silent,
mc.affinity = affinity.list[[i]]))
jobsp <- parallel:::processID(jobs)
has.errors <- 0L
delivered.result <- 0L
while (!all(fin)) {
s <- parallel:::selectChildren(jobs[!is.na(jobsp)], -1)
if (is.null(s))
break
if (is.integer(s))
for (ch in s) {
ji <- match(TRUE, jobsp == ch)
ci <- jobid[ji]
r <- parallel:::readChild(ch)
if (is.raw(r)) {
child.res <- unserialize(r)
if (inherits(child.res, "try-error")){
if(stop.on.error) #!!
stop("error in process X = ", ci, "\n", attr(child.res, "condition")$message) #!!
has.errors <- has.errors + 1L
}
if (!is.null(child.res))
res[[ci]] <- child.res
delivered.result <- delivered.result +
1L
}
else {
fin[ci] <- TRUE
jobsp[ji] <- jobid[ji] <- NA
if (any(ava)) {
nexti <- which.max(ava[, ji])
if (!is.na(nexti)) {
jobid[ji] <- nexti
jobs[[ji]] <- mcparallel(FUN(X[[nexti]],
...), mc.set.seed = mc.set.seed,
silent = mc.silent, mc.affinity = affinity.list[[nexti]])
jobsp[ji] <- parallel:::processID(jobs[[ji]])
ava[nexti, ] <- FALSE
}
}
}
}
}
nores <- length(X) - delivered.result
if (nores > 0)
warning(sprintf(ngettext(nores, "%d parallel function call did not deliver a result",
"%d parallel function calls did not deliver results"),
nores), domain = NA)
}
if (has.errors)
warning(gettextf("%d function calls resulted in an error",
has.errors), domain = NA)
return(res)
}
if (!is.null(affinity.list))
warning("'mc.preschedule' must be false if 'affinity.list' is used")
sindex <- lapply(seq_len(cores), function(i) seq(i, length(X),
by = cores))
schedule <- lapply(seq_len(cores), function(i) X[seq(i, length(X),
by = cores)])
ch <- list()
res <- vector("list", length(X))
names(res) <- names(X)
cp <- rep(0L, cores)
fin <- rep(FALSE, cores)
dr <- rep(FALSE, cores)
inner.do <- function(core) {
S <- schedule[[core]]
f <- parallel:::mcfork()
if (isTRUE(mc.set.seed))
parallel:::mc.advance.stream()
if (inherits(f, "masterProcess")) {
on.exit(mcexit(1L, structure("fatal error in wrapper code",
class = "try-error")))
if (isTRUE(mc.set.seed))
parallel:::mc.set.stream()
if (isTRUE(mc.silent))
closeStdout(TRUE)
parallel:::sendMaster(try(lapply(X = S, FUN = FUN, ...), silent = TRUE))
parallel:::mcexit(0L)
}
jobs[[core]] <<- ch[[core]] <<- f
cp[core] <<- parallel:::processID(f)
NULL
}
job.res <- lapply(seq_len(cores), inner.do)
ac <- cp[cp > 0]
has.errors <- integer(0)
while (!all(fin)) {
s <- parallel:::selectChildren(ac[!fin], -1)
if (is.null(s))
break
if (is.integer(s))
for (ch in s) {
a <- parallel:::readChild(ch)
if (is.integer(a)) {
core <- which(cp == a)
fin[core] <- TRUE
}
else if (is.raw(a)) {
core <- which(cp == attr(a, "pid"))
job.res[[core]] <- ijr <- unserialize(a)
if (inherits(ijr, "try-error")){
has.errors <- c(has.errors, core)
if(stop.on.error) #!!
stop("error in one of X = ", paste(schedule[[core]], collapse=", "), "\n", attr(ijr, "condition")$message) #!!
}
dr[core] <- TRUE
}
else if (is.null(a)) {
core <- which(cp == ch)
fin[core] <- TRUE
}
}
}
for (i in seq_len(cores)) {
this <- job.res[[i]]
if (inherits(this, "try-error")) {
for (j in sindex[[i]]) res[[j]] <- this
}
else if (!is.null(this))
res[sindex[[i]]] <- this
}
nores <- cores - sum(dr)
if (nores > 0)
warning(sprintf(ngettext(nores, "scheduled core %s did not deliver a result, all values of the job will be affected",
"scheduled cores %s did not deliver results, all values of the jobs will be affected"),
paste(which(dr == FALSE), collapse = ", ")), domain = NA)
if (length(has.errors)) {
if (length(has.errors) == cores)
warning("all scheduled cores encountered errors in user code")
else warning(sprintf(ngettext(has.errors, "scheduled core %s encountered error in user code, all values of the job will be affected",
"scheduled cores %s encountered errors in user code, all values of the jobs will be affected"),
paste(has.errors, collapse = ", ")), domain = NA)
}
res
}
测试:
f <- function(x, errorAt=1, sleep=2){
if(x==errorAt) stop("-->> test error <<--")
Sys.sleep(sleep)
x
}
options(mc.cores=2)
Mclapply(X=1:4, FUN=f, stop.on.error=TRUE)
## Error in Mclapply(X = 1:4, FUN = f, stop.on.error = TRUE) :
## error in one of X = 1, 3
## -->> test error <<--
Mclapply(X=1:4, FUN=f, errorAt=3, stop.on.error=TRUE)
## Error in Mclapply(X = 1:4, FUN = f, errorAt = 3, stop.on.error = TRUE) :
## error in one of X = 1, 3
## -->> test error <<--
Mclapply(X=1:4, FUN=f, errorAt=Inf, stop.on.error=TRUE)
## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] 3
##
## [[4]]
## [1] 4
Mclapply(X=1:4, FUN=f, mc.preschedule=FALSE, stop.on.error=TRUE)
## Error in Mclapply(X = 1:4, FUN = f, mc.preschedule = FALSE, stop.on.error = TRUE) :
## error in process X = 1
## -->> test error <<--
Mclapply(X=1:4, FUN=f, errorAt=3, mc.preschedule=FALSE, stop.on.error=TRUE)
## Error in Mclapply(X = 1:4, FUN = f, errorAt = 3, mc.preschedule = FALSE, :
## error in process X = 3
## -->> test error <<--
Mclapply(X=1:4, FUN=f, errorAt=Inf, mc.preschedule=FALSE, stop.on.error=TRUE)
## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] 3
##
## [[4]]
## [1] 4
此方法使用包 parallel 的许多内部函数(例如,parallel:::isChild()
)。它适用于 R 版本 3.6.0。
是否可以要求 parallel::mclapply()
在其任何一个过程中遇到错误(例如 stop()
)时尽快放弃所有进一步处理?
标准 mclapply()
调用无法在一个进程出错时终止集群所有进程的评估。这样做的原因是进程在完成之前不会相互通信。
使用 R 包 future 可以实现这样的行为。思路是
- 创建期货并并行评估它们
- 每 2 秒检查一次功能是否已解决为错误
- 如果检测到错误,则终止集群的所有进程
这是如何工作的草图:
library(future)
library(parallel)
library(tools)
parallelLapply <- function(x, fun, checkInterval=2, nProcess=2){
## setup cluster and get process IDs of process in cluster
cl <- makeCluster(spec=nProcess)
pids <- unlist(parLapply(cl=cl, X=1:nProcess, function(x) Sys.getpid()))
plan(cluster, workers=cl)
## create futures and start their evaluation
fList <- lapply(1:2, function(x) futureCall(function(x) try(fun(x), silent=TRUE), list(x=x)))
## check every 2 second whether an error occurred or whether all are resolved
while(TRUE){
Sys.sleep(checkInterval)
## check for errors
errorStatus <- unlist(lapply(fList, function(x)
resolved(x) && class(value(x))=="try-error"))
if(any(unlist(errorStatus))){
lapply(pids, pskill)
results <- NULL
cat("an error occurred in one future: all process of the cluster were killed.\n")
break
}
## check if all resolved without error
allResolved <- all(unlist(lapply(fList, resolved)))
if(allResolved){
results <- lapply(fList, value)
cat("all futures are resolved sucessfully.\n")
break
}
}
results
}
## test 1: early termination because x=1 results in an error.
f1 <- function(x){
if(x==1) stop()
Sys.sleep(15)
x
}
parallelLapply(x=1:5, fun=f1)
# an error occurred in one future: all process of the cluster were killed.
# NULL
## test 2: no error
f2 <- function(x){
Sys.sleep(15)
x
}
parallelLapply(x=1:5, fun=f2)
## all futures are resolved sucessfully.
## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
注:
- 如果传递给
fun
的函数取决于其他参数,则需要进行额外调整。 - 在 Linux 上,为方便起见,可以使用
makeForkCluster()
而不是makeCluster()
。那么用法更接近于mclapply()
.
以下是丑陋的,但可行。它使用文件系统作为全局共享变量。
options( mc.cores=2 )
if (!exists("touchFile"))
touchFile <- function(filename) { system(paste0("touch ", filename)); }
tfnm <- paste0("mytemporary",as.numeric(Sys.time()))
mfun <- function( i ) {
if (file.exists( tfnm )) stop("done due to process ", i)
message("Mfun(", i,")")
if ( i == 3 ) { message("creating ", tfnm); touchFile(tfnm); stop("goodbye"); }
Sys.sleep( i%%3 )
}
v <- mclapply( 1:10, mfun )
if (file.exists(tfnm)) file.remove(tfnm)
mclapply自己实现会更好
这是 ivo Welch 建议的更简洁版本。请注意,此 不会在发生错误时停止 运行 进程 ,而是 阻止开始新的评估 FUN
.
library(parallel)
mcLapply <- function(X, FUN, ..., mc.preschedule=TRUE,
mc.set.seed=TRUE, mc.silent=FALSE,
mc.cores=getOption("mc.cores", 2L),
mc.cleanup=TRUE, mc.allow.recursive=TRUE,
affinity.list=NULL){
tmpFileName <- tempfile()
fn <- function(X){
if(file.exists(tmpFileName))
return(NA)
o <- try(do.call("FUN", c(X, list(...))), silent=TRUE)
if(class(o)=="try-error"){
file.create(tmpFileName)
}
o
}
ret <- mclapply(X=X, FUN=fn, mc.preschedule=mc.preschedule,
mc.set.seed=mc.set.seed, mc.silent=mc.silent,
mc.cores=mc.cores, mc.cleanup=mc.cleanup,
mc.allow.recursive=mc.allow.recursive,
affinity.list=affinity.list)
if(exists(tmpFileName))
file.remove(tmpFileName)
ret
}
## test 1: early termination because x=1 results in an error.
f1 <- function(x){
if(x==1) stop()
Sys.sleep(1)
x
}
mcLapply(X=1:3, FUN=f1)
## [[1]]
## [1] "Error in FUN(1L) : \n"
## attr(,"class")
## [1] "try-error"
## attr(,"condition")
## <simpleError in FUN(1L): >
##
## [[2]]
## [1] NA
##
## [[3]]
## [1] NA
## test 2: no error
f2 <- function(x, a){
Sys.sleep(1)
x+a
}
mcLapply(X=1:2, FUN=f2, a=10)
## [[1]]
## [1] 11
##
## [[2]]
## [1] 12
还有一种做法: 思路是在#!!
所指的三个地方修改parallel::mclapply()
。新参数 stop.on.error
可用于指定发生错误时是否应停止执行。
library(parallel)
Mclapply <- function (X, FUN, ..., mc.preschedule = TRUE,
mc.set.seed = TRUE, mc.silent = FALSE,
mc.cores = getOption("mc.cores", 2L),
mc.cleanup = TRUE, mc.allow.recursive = TRUE,
affinity.list = NULL, stop.on.error=FALSE)
{
stop.on.error <- stop.on.error[1] #!!
stopifnot(is.logical(stop.on.error)) #!!
cores <- as.integer(mc.cores)
if ((is.na(cores) || cores < 1L) && is.null(affinity.list))
stop("'mc.cores' must be >= 1")
parallel:::.check_ncores(cores)
if (parallel:::isChild() && !isTRUE(mc.allow.recursive))
return(lapply(X = X, FUN = FUN, ...))
if (!is.vector(X) || is.object(X))
X <- as.list(X)
if (!is.null(affinity.list) && length(affinity.list) < length(X))
stop("affinity.list and X must have the same length")
if (mc.set.seed)
mc.reset.stream()
if (length(X) < 2) {
old.aff <- mcaffinity()
mcaffinity(affinity.list[[1]])
res <- lapply(X = X, FUN = FUN, ...)
mcaffinity(old.aff)
return(res)
}
if (length(X) < cores)
cores <- length(X)
if (cores < 2L && is.null(affinity.list))
return(lapply(X = X, FUN = FUN, ...))
jobs <- list()
parallel:::prepareCleanup()
on.exit(parallel:::cleanup(mc.cleanup))
if (!mc.preschedule) {
FUN <- match.fun(FUN)
if (length(X) <= cores && is.null(affinity.list)) {
jobs <- lapply(seq_along(X), function(i) mcparallel(FUN(X[[i]],
...), name = names(X)[i], mc.set.seed = mc.set.seed,
silent = mc.silent))
res <- mccollect(jobs)
if (length(res) == length(X))
names(res) <- names(X)
has.errors <- sum(sapply(res, inherits, "try-error"))
}
else {
sx <- seq_along(X)
res <- vector("list", length(sx))
names(res) <- names(X)
fin <- rep(FALSE, length(X))
if (!is.null(affinity.list)) {
cores <- max(unlist(x = affinity.list, recursive = TRUE))
d0 <- logical(cores)
cpu.map <- lapply(sx, function(i) {
data <- d0
data[as.vector(affinity.list[[i]])] <- TRUE
data
})
ava <- do.call(rbind, cpu.map)
}
else {
ava <- matrix(TRUE, nrow = length(X), ncol = cores)
}
jobid <- integer(cores)
for (i in 1:cores) {
jobid[i] <- match(TRUE, ava[, i])
ava[jobid[i], ] <- FALSE
}
if (anyNA(jobid)) {
unused <- which(is.na(jobid))
jobid <- jobid[-unused]
ava <- ava[, -unused, drop = FALSE]
}
jobs <- lapply(jobid, function(i) mcparallel(FUN(X[[i]],
...), mc.set.seed = mc.set.seed, silent = mc.silent,
mc.affinity = affinity.list[[i]]))
jobsp <- parallel:::processID(jobs)
has.errors <- 0L
delivered.result <- 0L
while (!all(fin)) {
s <- parallel:::selectChildren(jobs[!is.na(jobsp)], -1)
if (is.null(s))
break
if (is.integer(s))
for (ch in s) {
ji <- match(TRUE, jobsp == ch)
ci <- jobid[ji]
r <- parallel:::readChild(ch)
if (is.raw(r)) {
child.res <- unserialize(r)
if (inherits(child.res, "try-error")){
if(stop.on.error) #!!
stop("error in process X = ", ci, "\n", attr(child.res, "condition")$message) #!!
has.errors <- has.errors + 1L
}
if (!is.null(child.res))
res[[ci]] <- child.res
delivered.result <- delivered.result +
1L
}
else {
fin[ci] <- TRUE
jobsp[ji] <- jobid[ji] <- NA
if (any(ava)) {
nexti <- which.max(ava[, ji])
if (!is.na(nexti)) {
jobid[ji] <- nexti
jobs[[ji]] <- mcparallel(FUN(X[[nexti]],
...), mc.set.seed = mc.set.seed,
silent = mc.silent, mc.affinity = affinity.list[[nexti]])
jobsp[ji] <- parallel:::processID(jobs[[ji]])
ava[nexti, ] <- FALSE
}
}
}
}
}
nores <- length(X) - delivered.result
if (nores > 0)
warning(sprintf(ngettext(nores, "%d parallel function call did not deliver a result",
"%d parallel function calls did not deliver results"),
nores), domain = NA)
}
if (has.errors)
warning(gettextf("%d function calls resulted in an error",
has.errors), domain = NA)
return(res)
}
if (!is.null(affinity.list))
warning("'mc.preschedule' must be false if 'affinity.list' is used")
sindex <- lapply(seq_len(cores), function(i) seq(i, length(X),
by = cores))
schedule <- lapply(seq_len(cores), function(i) X[seq(i, length(X),
by = cores)])
ch <- list()
res <- vector("list", length(X))
names(res) <- names(X)
cp <- rep(0L, cores)
fin <- rep(FALSE, cores)
dr <- rep(FALSE, cores)
inner.do <- function(core) {
S <- schedule[[core]]
f <- parallel:::mcfork()
if (isTRUE(mc.set.seed))
parallel:::mc.advance.stream()
if (inherits(f, "masterProcess")) {
on.exit(mcexit(1L, structure("fatal error in wrapper code",
class = "try-error")))
if (isTRUE(mc.set.seed))
parallel:::mc.set.stream()
if (isTRUE(mc.silent))
closeStdout(TRUE)
parallel:::sendMaster(try(lapply(X = S, FUN = FUN, ...), silent = TRUE))
parallel:::mcexit(0L)
}
jobs[[core]] <<- ch[[core]] <<- f
cp[core] <<- parallel:::processID(f)
NULL
}
job.res <- lapply(seq_len(cores), inner.do)
ac <- cp[cp > 0]
has.errors <- integer(0)
while (!all(fin)) {
s <- parallel:::selectChildren(ac[!fin], -1)
if (is.null(s))
break
if (is.integer(s))
for (ch in s) {
a <- parallel:::readChild(ch)
if (is.integer(a)) {
core <- which(cp == a)
fin[core] <- TRUE
}
else if (is.raw(a)) {
core <- which(cp == attr(a, "pid"))
job.res[[core]] <- ijr <- unserialize(a)
if (inherits(ijr, "try-error")){
has.errors <- c(has.errors, core)
if(stop.on.error) #!!
stop("error in one of X = ", paste(schedule[[core]], collapse=", "), "\n", attr(ijr, "condition")$message) #!!
}
dr[core] <- TRUE
}
else if (is.null(a)) {
core <- which(cp == ch)
fin[core] <- TRUE
}
}
}
for (i in seq_len(cores)) {
this <- job.res[[i]]
if (inherits(this, "try-error")) {
for (j in sindex[[i]]) res[[j]] <- this
}
else if (!is.null(this))
res[sindex[[i]]] <- this
}
nores <- cores - sum(dr)
if (nores > 0)
warning(sprintf(ngettext(nores, "scheduled core %s did not deliver a result, all values of the job will be affected",
"scheduled cores %s did not deliver results, all values of the jobs will be affected"),
paste(which(dr == FALSE), collapse = ", ")), domain = NA)
if (length(has.errors)) {
if (length(has.errors) == cores)
warning("all scheduled cores encountered errors in user code")
else warning(sprintf(ngettext(has.errors, "scheduled core %s encountered error in user code, all values of the job will be affected",
"scheduled cores %s encountered errors in user code, all values of the jobs will be affected"),
paste(has.errors, collapse = ", ")), domain = NA)
}
res
}
测试:
f <- function(x, errorAt=1, sleep=2){
if(x==errorAt) stop("-->> test error <<--")
Sys.sleep(sleep)
x
}
options(mc.cores=2)
Mclapply(X=1:4, FUN=f, stop.on.error=TRUE)
## Error in Mclapply(X = 1:4, FUN = f, stop.on.error = TRUE) :
## error in one of X = 1, 3
## -->> test error <<--
Mclapply(X=1:4, FUN=f, errorAt=3, stop.on.error=TRUE)
## Error in Mclapply(X = 1:4, FUN = f, errorAt = 3, stop.on.error = TRUE) :
## error in one of X = 1, 3
## -->> test error <<--
Mclapply(X=1:4, FUN=f, errorAt=Inf, stop.on.error=TRUE)
## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] 3
##
## [[4]]
## [1] 4
Mclapply(X=1:4, FUN=f, mc.preschedule=FALSE, stop.on.error=TRUE)
## Error in Mclapply(X = 1:4, FUN = f, mc.preschedule = FALSE, stop.on.error = TRUE) :
## error in process X = 1
## -->> test error <<--
Mclapply(X=1:4, FUN=f, errorAt=3, mc.preschedule=FALSE, stop.on.error=TRUE)
## Error in Mclapply(X = 1:4, FUN = f, errorAt = 3, mc.preschedule = FALSE, :
## error in process X = 3
## -->> test error <<--
Mclapply(X=1:4, FUN=f, errorAt=Inf, mc.preschedule=FALSE, stop.on.error=TRUE)
## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] 3
##
## [[4]]
## [1] 4
此方法使用包 parallel 的许多内部函数(例如,parallel:::isChild()
)。它适用于 R 版本 3.6.0。