当分辨率高于 320 像素时,Mandelbrot 代码不令人兴奋?
Mandelbrot code not exciting when resolution is higher than 320 pixels?
我正在学习 C 并尝试新事物来测试我能做什么。我已经编写了生成具有给定分辨率 (RES) 的 Mandelbrot 集的代码,该分辨率在 .h 文件中为 #define RES
。对于小于 321 的分辨率,这有效并产生良好的输出。出于某种原因,当 RES > 321
时代码不再执行。
我 运行正在使用 GCC 并使用 Gnuplot 绘制输出。我曾尝试使用调试器进行调试,但是对于 RES > 321
,main
函数不再获得 运行?我在 main()
的第一行添加了一个打印来查看,但没有得到 运行。生成可执行文件并且程序编译没有错误?
#include <stdio.h>
#include <math.h>
#define MAX_DEPTH 100
#define RES 321
typedef struct complex_t {
double re;
double im;
} complex;
void init_complex_grid(complex complex_grid[RES][RES], double left, double right, double top, double bottom);
int converge(complex a);
complex add_complex(complex a, complex b);
complex square_complex(complex a);
double mag_complex(complex a);
void output_grid(unsigned int grid[RES][RES]);
int main(void) {
// printf("HERE\n");
int i, j;
unsigned int convergence_grid[RES][RES];
complex complex_grid[RES][RES];
init_complex_grid(complex_grid, -2.5, 1, 1, -1);
for (i = 0; i < RES; i++) {
for (j = 0; j < RES; j++) {
convergence_grid[i][j] = converge(complex_grid[i][j]);
}
}
output_grid(convergence_grid);
return 0;
}
void init_complex_grid(complex complex_grid[RES][RES],
double left, double right,
double top, double bottom) {
int i, j;
double restep = (top - bottom) / RES;
double imstep = (right - left) / RES;
for (i = 0; i < RES; i++) {
for (j = 0; j < RES; j++) {
complex_grid[i][j].re = left + j * imstep;
complex_grid[i][j].im = bottom + i * restep;
}
}
}
int converge(complex a) {
complex z = { 0, 0 };
int cnt = 0;
while (cnt <= MAX_DEPTH && mag_complex(z) <= 2) {
z = add_complex(square_complex(z), a);
cnt++;
}
return cnt;
}
complex add_complex(complex a, complex b) {
complex added = { a.re + b.re, a.im + b.im };
return added;
}
complex square_complex(complex a) {
complex b;
b.re = a.re * a.re - a.im * a.im;
b.im = 2 * a.re * b.im;
return b;
}
double mag_complex(complex a) {
return sqrt(a.re * a.re + a.im * a.im);
}
void output_grid(unsigned int grid[RES][RES]) {
FILE *f = fopen("mandelbrot.dat", "w");
int i, j;
for (i = 0; i < RES; i++) {
for (j = 0; j < RES; j++) {
fprintf(f, "%d ", grid[i][j]);
}
fprintf(f, "\n");
}
fclose(f);
printf("\nFILE CLOSED\n");
}
我还添加了 printf("\nFILE CLOSED\n");
行,这样我就知道输出已写入文件,但是 运行 也没有 RES > 321
.
您在 main()
函数中使用自动存储定义了太多数据:要么将大型数组设为全局、静态,要么从堆中分配它们。
这里有一个您可以尝试的简单修复方法:
int main(void) {
int i, j;
static unsigned int convergence_grid[RES][RES];
static complex complex_grid[RES][RES];
init_complex_grid(complex_grid, -2.5, 1, 1, -1);
for (i = 0; i < RES; i++) {
for (j = 0; j < RES; j++) {
convergence_grid[i][j] = converge(complex_grid[i][j]);
}
}
output_grid(convergence_grid);
return 0;
}
这是使用堆分配的替代方法:
int main(void) {
int i, j;
unsigned int (*convergence_grid)[RES] = calloc(sizeof(*convergence_grid), RES);
complex (*complex_grid)[RES] = calloc(sizeof(*complex_grid), RES);
if (!convergence_grid || !complex_grid) {
fprintf(stderr, "cannot allocate arrays\n");
return 1;
}
init_complex_grid(complex_grid, -2.5, 1, 1, -1);
for (i = 0; i < RES; i++) {
for (j = 0; j < RES; j++) {
convergence_grid[i][j] = converge(complex_grid[i][j]);
}
}
output_grid(convergence_grid);
free(complex_grid);
free(convergence_grid);
return 0;
}
我正在学习 C 并尝试新事物来测试我能做什么。我已经编写了生成具有给定分辨率 (RES) 的 Mandelbrot 集的代码,该分辨率在 .h 文件中为 #define RES
。对于小于 321 的分辨率,这有效并产生良好的输出。出于某种原因,当 RES > 321
时代码不再执行。
我 运行正在使用 GCC 并使用 Gnuplot 绘制输出。我曾尝试使用调试器进行调试,但是对于 RES > 321
,main
函数不再获得 运行?我在 main()
的第一行添加了一个打印来查看,但没有得到 运行。生成可执行文件并且程序编译没有错误?
#include <stdio.h>
#include <math.h>
#define MAX_DEPTH 100
#define RES 321
typedef struct complex_t {
double re;
double im;
} complex;
void init_complex_grid(complex complex_grid[RES][RES], double left, double right, double top, double bottom);
int converge(complex a);
complex add_complex(complex a, complex b);
complex square_complex(complex a);
double mag_complex(complex a);
void output_grid(unsigned int grid[RES][RES]);
int main(void) {
// printf("HERE\n");
int i, j;
unsigned int convergence_grid[RES][RES];
complex complex_grid[RES][RES];
init_complex_grid(complex_grid, -2.5, 1, 1, -1);
for (i = 0; i < RES; i++) {
for (j = 0; j < RES; j++) {
convergence_grid[i][j] = converge(complex_grid[i][j]);
}
}
output_grid(convergence_grid);
return 0;
}
void init_complex_grid(complex complex_grid[RES][RES],
double left, double right,
double top, double bottom) {
int i, j;
double restep = (top - bottom) / RES;
double imstep = (right - left) / RES;
for (i = 0; i < RES; i++) {
for (j = 0; j < RES; j++) {
complex_grid[i][j].re = left + j * imstep;
complex_grid[i][j].im = bottom + i * restep;
}
}
}
int converge(complex a) {
complex z = { 0, 0 };
int cnt = 0;
while (cnt <= MAX_DEPTH && mag_complex(z) <= 2) {
z = add_complex(square_complex(z), a);
cnt++;
}
return cnt;
}
complex add_complex(complex a, complex b) {
complex added = { a.re + b.re, a.im + b.im };
return added;
}
complex square_complex(complex a) {
complex b;
b.re = a.re * a.re - a.im * a.im;
b.im = 2 * a.re * b.im;
return b;
}
double mag_complex(complex a) {
return sqrt(a.re * a.re + a.im * a.im);
}
void output_grid(unsigned int grid[RES][RES]) {
FILE *f = fopen("mandelbrot.dat", "w");
int i, j;
for (i = 0; i < RES; i++) {
for (j = 0; j < RES; j++) {
fprintf(f, "%d ", grid[i][j]);
}
fprintf(f, "\n");
}
fclose(f);
printf("\nFILE CLOSED\n");
}
我还添加了 printf("\nFILE CLOSED\n");
行,这样我就知道输出已写入文件,但是 运行 也没有 RES > 321
.
您在 main()
函数中使用自动存储定义了太多数据:要么将大型数组设为全局、静态,要么从堆中分配它们。
这里有一个您可以尝试的简单修复方法:
int main(void) {
int i, j;
static unsigned int convergence_grid[RES][RES];
static complex complex_grid[RES][RES];
init_complex_grid(complex_grid, -2.5, 1, 1, -1);
for (i = 0; i < RES; i++) {
for (j = 0; j < RES; j++) {
convergence_grid[i][j] = converge(complex_grid[i][j]);
}
}
output_grid(convergence_grid);
return 0;
}
这是使用堆分配的替代方法:
int main(void) {
int i, j;
unsigned int (*convergence_grid)[RES] = calloc(sizeof(*convergence_grid), RES);
complex (*complex_grid)[RES] = calloc(sizeof(*complex_grid), RES);
if (!convergence_grid || !complex_grid) {
fprintf(stderr, "cannot allocate arrays\n");
return 1;
}
init_complex_grid(complex_grid, -2.5, 1, 1, -1);
for (i = 0; i < RES; i++) {
for (j = 0; j < RES; j++) {
convergence_grid[i][j] = converge(complex_grid[i][j]);
}
}
output_grid(convergence_grid);
free(complex_grid);
free(convergence_grid);
return 0;
}