R 中的桑基图 - 数据准备

sankey diagram in R - data preparation

我有以下数据框,其中每个患者都是一行(我只显示其中的一个样本):

df = structure(list(firstY = c("N/A", "1", "3a", "3a", "3b", "1", 
"2", "1", "5", "3b"), secondY = c("N/A", "1", "2", "3a", "4", 
"1", "N/A", "1", "5", "3b"), ThirdY = c("N/A", "1", "N/A", "3b", 
"4", "1", "N/A", "1", "N/A", "3b"), FourthY = c("N/A", "1", "N/A", 
"3a", "4", "1", "N/A", "1", "N/A", "3a"), FifthY = c("N/A", "1", 
"N/A", "2", "5", "1", "N/A", "N/A", "N/A", "3b")), class = c("tbl_df", 
"tbl", "data.frame"), row.names = c(NA, -10L))

我想绘制一个 Sankey 图,它显示每个患者随时间的轨迹,我知道我必须创建节点和链接,但我在将数据转换为必要的格式时遇到了问题完成这个。具体来说,最有问题的问题是统计每个轨迹有多少患者,例如第一年有多少患者从stage 1到stage 2,以及所有其他组合。

如能提供数据准备方面的帮助,我们将不胜感激。

Alluvial 包虽然易于理解,但在数据量很大的情况下并不能很好地应对。

不太清楚你想要实现什么,因为你没有提到你想要使用的包,但看看你的数据,这似乎有帮助,如果你可以使用 alluvial 包裹:

library(alluvial) # sankey plots
library(dplyr)    # data manipulation

alluvial 函数可以像您一样使用宽格式数据,但它需要一个频率列,因此我们可以创建它,然后绘制:

dats_all <- df %>%                                                   # data
            group_by( firstY, secondY, ThirdY, FourthY, FifthY) %>%  # group them
            summarise(Freq = n())                                    # add frequencies

 # now plot it
alluvial( dats_all[,1:5], freq=dats_all$Freq, border=NA )

另一方面,如果您想使用特定的包,您应该指定是哪个包。


编辑

使用 network3D 有点棘手,但您也许可以从中获得一些不错的结果。您需要 links 和节点,并让它们匹配,所以首先我们可以创建 links:

# put your df in two columns, and preserve the ordering in many levels (columns) with paste0
links <- data.frame(source = c(paste0(df$firstY,'_1'),paste0(df$secondY,'_2'),paste0(df$ThirdY,'_3'),paste0(df$FourthY,'_4')),
                  target   = c(paste0(df$secondY,'_2'),paste0(df$ThirdY,'_3'),paste0(df$FourthY,'_4'),paste0(df$FifthY,'_5')))

# now convert as character
links$source <- as.character(links$source)
links$target<- as.character(links$target)

现在节点是 link 中的每个元素 unique() 方式:

nodes <- data.frame(name = unique(c(links$source, links$target)))

现在我们需要每个节点都有一个link(或vice-versa),所以我们匹配它们并进行数字转换。注意最后的-1,因为networkD3是0索引,表示数字(索引)从0开始。

links$source <- match(links$source, nodes$name) - 1
links$target <- match(links$target, nodes$name) - 1
links$value <- 1 # add also a value

现在您应该准备好绘制桑基图了:

sankeyNetwork(Links = links, Nodes = nodes, Source = 'source',
              Target = 'target', Value = 'value', NodeID = 'name')

使用 ggforce:

library(ggforce)
library(dplyr)

xx <- df %>% 
  count(firstY, secondY, ThirdY, FourthY, FifthY, name = "value") %>% 
  gather_set_data(1:5) %>% 
  mutate(x = factor(x, levels = colnames(df)))


ggplot(xx, aes(x, id = id, split = y, value = value)) +
  geom_parallel_sets(alpha = 0.3, axis.width = 0.1) +
  geom_parallel_sets_axes(axis.width = 0.3) +
  geom_parallel_sets_labels(colour = "white")

一个 way with

library(tidyr)
library(dplyr)
library(networkD3)

df <- read.table(header = TRUE, stringsAsFactors = FALSE, text = "
firstY secondY ThirdY FourthY FifthY
N/A    N/A     N/A    N/A     N/A   
1      1       1      1       1     
3a     2       N/A    N/A     N/A   
3a     3a      3b     3a      2     
3b     4       4      4       5     
1      1       1      1       1     
2      N/A     N/A    N/A     N/A   
1      1       1      1       N/A   
5      5       N/A    N/A     N/A   
3b     3b      3b     3a      3b
")

links <-
  df %>% 
  mutate(row = row_number()) %>%  # add a row id
  pivot_longer(-row, names_to = "col", values_to = "source") %>%  # gather all columns
  mutate(col = match(col, names(df))) %>%  # convert col names to col ids
  mutate(source = paste0(source, '_', col)) %>%  # add col id to node names
  group_by(row) %>%
  mutate(target = lead(source, order_by = col)) %>%  # get target from following node in row
  ungroup() %>% 
  filter(!is.na(target)) %>%  # remove links from last column in original data
  group_by(source, target) %>% 
  summarise(value = n(), .groups = "drop")  # aggregate and count similar links

# create nodes data frame from unque nodes found in links data frame
nodes <- data.frame(id = unique(c(links$source, links$target)),
                    stringsAsFactors = FALSE)
# remove column id from node names
nodes$name <- sub('_[0-9]*$', '', nodes$id)

# create node ids in links data to the 0-based index of the nodes in the nodes data frame
links$source_id <- match(links$source, nodes$id) - 1
links$target_id <- match(links$target, nodes$id) - 1

sankeyNetwork(Links = links, Nodes = nodes, Source = 'source_id',
              Target = 'target_id', Value = 'value', NodeID = 'name')