Keras 中特征提取的 ResNet50 输入问题
ResNet50 input issue for feature extraction in Keras
我正在使用预训练的 Resnet50 模型对图像进行简单的特征提取。但它给了我这个错误。
Error when checking input: expected input_9 to have the shape (224, 224, 3) but got array with shape (244, 244, 3)
我认为我正确地更改了形状并为其添加了尺寸,就像本教程所说的那样。 https://www.kaggle.com/kelexu/extract-resnet-feature-using-keras
但是还是出现上面的错误。
我做错了什么?
# load pre-trained resnet50
base_model = ResNet50(weights='imagenet', include_top=False,pooling=max)
x = base_model.output
input = Input(shape=(224,224,3))
x = Flatten()(input)
model = Model(inputs=input, outputs=x)
# Load in image
img = image.load_img("001.png", target_size=(244, 244))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print(x.shape) # This produces (1, 244, 244, 3)
features = model.predict(x)
features_reduce = features.squeeze()
改变
img = image.load_img("001.png", target_size=(244, 244))
到
img = image.load_img("001.png", target_size=(224, 224))
我正在使用预训练的 Resnet50 模型对图像进行简单的特征提取。但它给了我这个错误。
Error when checking input: expected input_9 to have the shape (224, 224, 3) but got array with shape (244, 244, 3)
我认为我正确地更改了形状并为其添加了尺寸,就像本教程所说的那样。 https://www.kaggle.com/kelexu/extract-resnet-feature-using-keras
但是还是出现上面的错误。
我做错了什么?
# load pre-trained resnet50
base_model = ResNet50(weights='imagenet', include_top=False,pooling=max)
x = base_model.output
input = Input(shape=(224,224,3))
x = Flatten()(input)
model = Model(inputs=input, outputs=x)
# Load in image
img = image.load_img("001.png", target_size=(244, 244))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print(x.shape) # This produces (1, 244, 244, 3)
features = model.predict(x)
features_reduce = features.squeeze()
改变
img = image.load_img("001.png", target_size=(244, 244))
到
img = image.load_img("001.png", target_size=(224, 224))