获取不同的列数据框
get distinct columns dataframe
你好,我该怎么做才能只处理 2 个数据帧中 val 不同的行。
请注意,我可以有 id1 或 id2 或两者,如下所示。
d2 = {'id1': ['X22', 'X13',np.nan,'X02','X14'],'id2': ['Y1','Y2','Y3','Y4',np.nan],'VAL1':[1,0,2,3,0]}
F1 = pd.DataFrame(data=d2)
d2 = {'id1': ['X02', 'X13',np.nan,'X22','X14'],'id2': ['Y4','Y2','Y3','Y1','Y22'],'VAL2':[1,0,4,3,1]}
F2 = pd.DataFrame(data=d2)
预期输出
d2 = {'id1': ['X02',np.nan,'X22','X14'],'id2': ['Y4','Y3','Y1',np.nan],'VAL1':[3,2,1,0],'VAL2':[1,4,3,1]}
F3 = pd.DataFrame(数据=d2)
首先使用 left_on
和 right_on
参数合并所有列,然后过滤掉 both
行并通过 stack
和 [=15= 重塑删除缺失值]:
df=pd.merge(F1, F2, left_on=['id1','id2','VAL2'],
right_on=['id1','id2','VAL1'], how="outer", indicator=True)
df=(df[df['_merge'] !='both']
.set_index(['id1','id2'])
.drop('_merge', 1)
.stack()
.unstack()
.reset_index())
print (df)
id1 id2 VAL2 VAL1
0 X02 Y4 3 1
1 X22 Y1 1 3
你好,我该怎么做才能只处理 2 个数据帧中 val 不同的行。 请注意,我可以有 id1 或 id2 或两者,如下所示。
d2 = {'id1': ['X22', 'X13',np.nan,'X02','X14'],'id2': ['Y1','Y2','Y3','Y4',np.nan],'VAL1':[1,0,2,3,0]}
F1 = pd.DataFrame(data=d2)
d2 = {'id1': ['X02', 'X13',np.nan,'X22','X14'],'id2': ['Y4','Y2','Y3','Y1','Y22'],'VAL2':[1,0,4,3,1]}
F2 = pd.DataFrame(data=d2)
预期输出
d2 = {'id1': ['X02',np.nan,'X22','X14'],'id2': ['Y4','Y3','Y1',np.nan],'VAL1':[3,2,1,0],'VAL2':[1,4,3,1]}
F3 = pd.DataFrame(数据=d2)
首先使用 left_on
和 right_on
参数合并所有列,然后过滤掉 both
行并通过 stack
和 [=15= 重塑删除缺失值]:
df=pd.merge(F1, F2, left_on=['id1','id2','VAL2'],
right_on=['id1','id2','VAL1'], how="outer", indicator=True)
df=(df[df['_merge'] !='both']
.set_index(['id1','id2'])
.drop('_merge', 1)
.stack()
.unstack()
.reset_index())
print (df)
id1 id2 VAL2 VAL1
0 X02 Y4 3 1
1 X22 Y1 1 3