指数问题及其 C 表示
Exponential problems and their C representation
我遇到了著名的 N 皇后问题,我想知道如何编写程序来计算这个特定问题的可能性数。我的程序可以为非常小的 N 快速找到解决方案(因为它是启发式的)。
我还想知道如何在 C 中表示如此大的数字。是否有针对真正大数字的算法?每当我编写和实现自己的算法时,我都会得到 i. e.带有大量内存分配的二次乘法不可能很快。预先感谢您详尽的回答。
here is a nice solution, using recursion
(taken from: <http://rosettacode.org/wiki/N-queens_problem#C>)
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
typedef uint32_t uint;
uint full, *qs, count = 0, nn;
void solve(uint d, uint c, uint l, uint r)
{
uint b, a, *s;
if (!d) // exit condition
{
count++;
#if 0
printf("\nNo. %d\n===========\n", count);
for (a = 0; a < nn; a++, putchar('\n'))
{
for (b = 0; b < nn; b++, putchar(' '))
{
putchar(" -QQ"[((b == qs[a])<<1)|((a + b)&1)]);
} // end for
} // end for
#endif
return;
} // end if
a = (c | (l <<= 1) | (r >>= 1)) & full;
if (a != full)
{
for (*(s = qs + --d) = 0, b = 1; b <= full; (*s)++, b <<= 1)
{
if (!(b & a))
{
solve(d, b|c, b|l, b|r);
} // end if
} // end for
} // end if
} // end function: solve
int main(int n, char **argv)
{
if (n <= 1 || (nn = atoi(argv[1])) <= 0) nn = 8;
qs = calloc(nn, sizeof(int));
full = (1U << nn) - 1;
solve(nn, 0, 0, 0);
printf("\nSolutions: %d\n", count);
return 0;
} // end function: main
我遇到了著名的 N 皇后问题,我想知道如何编写程序来计算这个特定问题的可能性数。我的程序可以为非常小的 N 快速找到解决方案(因为它是启发式的)。
我还想知道如何在 C 中表示如此大的数字。是否有针对真正大数字的算法?每当我编写和实现自己的算法时,我都会得到 i. e.带有大量内存分配的二次乘法不可能很快。预先感谢您详尽的回答。
here is a nice solution, using recursion
(taken from: <http://rosettacode.org/wiki/N-queens_problem#C>)
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
typedef uint32_t uint;
uint full, *qs, count = 0, nn;
void solve(uint d, uint c, uint l, uint r)
{
uint b, a, *s;
if (!d) // exit condition
{
count++;
#if 0
printf("\nNo. %d\n===========\n", count);
for (a = 0; a < nn; a++, putchar('\n'))
{
for (b = 0; b < nn; b++, putchar(' '))
{
putchar(" -QQ"[((b == qs[a])<<1)|((a + b)&1)]);
} // end for
} // end for
#endif
return;
} // end if
a = (c | (l <<= 1) | (r >>= 1)) & full;
if (a != full)
{
for (*(s = qs + --d) = 0, b = 1; b <= full; (*s)++, b <<= 1)
{
if (!(b & a))
{
solve(d, b|c, b|l, b|r);
} // end if
} // end for
} // end if
} // end function: solve
int main(int n, char **argv)
{
if (n <= 1 || (nn = atoi(argv[1])) <= 0) nn = 8;
qs = calloc(nn, sizeof(int));
full = (1U << nn) - 1;
solve(nn, 0, 0, 0);
printf("\nSolutions: %d\n", count);
return 0;
} // end function: main