如何使用8个点形成一个平面?
How to form a plane surfaces using 8 points?
我已经用长方体的中心绘制了我的 8 个角点,如图 所示。
我试过散点图,但现在我想要连接这 8 个点的曲面图。
当我尝试使用曲面图时,我无法处理它。你能提出任何解决方案吗
l = 0.3
w = 0.4
h = 0.1
center =
[2.10737, -0.100085, 0.716869]
F=
[[array([[1.]]) array([[-0.001]]) array([[-0.017]])]
[array([[0.]]) array([[-0.999]]) array([[0.037]])]
[array([[0.017]]) array([[0.037]]) array([[0.999]])]]
def cuboid(center, size):
ox, oy, oz = center
l, w, h = size
ax = fig.gca(projection='3d') ##plot the project cuboid
X=[ox-l/2,ox-l/2,ox-l/2,ox-l/2,ox+l/2,ox+l/2,ox+l/2,ox+l/2]
Y=[oy+w/2,oy-w/2,oy-w/2,oy+w/2,oy+w/2,oy-w/2,oy-w/2,oy+w/2]
Z=[oz-h/2,oz-h/2,oz+h/2,oz+h/2,oz+h/2,oz+h/2,oz-h/2,oz-h/2]
X_new = ([])
Y_new = ([])
Z_new = ([])
for i in range(0,8):
c=np.matrix([[X[i]],
[Y[i]],
[Z[i]]])
u=F*c
X_new = np.append(X_new, u.item(0))
Y_new = np.append(Y_new, u.item(1))
Z_new = np.append(Z_new, u.item(2))
ax.scatter(X_new,Y_new,Z_new,c='darkred',marker='o') #the plot of points after rotated
ax.scatter(ox,oy,oz,c='crimson',marker='o') #the previous plot of points before rotated
## Add title
plt.title('Plot_for_PSM', fontsize=20)
plt.gca().invert_yaxis()
##labelling the axes
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
这是一个解决方案。
###Added import
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
###Addded size and center in this format in order to manipulate them easily
size = [0.3, 0.4, 0.1]
center = [2.10737, -0.100085, 0.716869]
###This numpy vector will be used to store the position of the sides
side = np.zeros((8,3))
###Just re-ordered your matrix in some np.arrays
F = [[np.array([1., -0.001, -0.017])],
[np.array([0., -0.999, 0.037])],
[np.array([0.017, 0.037, 0.999])]]
def cuboid(center, size):
ox, oy, oz = center
l, w, h = size
###Added the fig in order to be able to plot it later
fig = plt.figure()
ax = fig.gca(projection='3d') ##plot the project cuboid
X=[ox-l/2,ox-l/2,ox-l/2,ox-l/2,ox+l/2,ox+l/2,ox+l/2,ox+l/2]
Y=[oy+w/2,oy-w/2,oy-w/2,oy+w/2,oy+w/2,oy-w/2,oy-w/2,oy+w/2]
Z=[oz-h/2,oz-h/2,oz+h/2,oz+h/2,oz+h/2,oz+h/2,oz-h/2,oz-h/2]
X_new = ([])
Y_new = ([])
Z_new = ([])
for i in range(0,8):
c=np.matrix([[X[i]],
[Y[i]],
[Z[i]]])
u=F*c
X_new = np.append(X_new, u.item(0))
Y_new = np.append(Y_new, u.item(1))
Z_new = np.append(Z_new, u.item(2))
###Doing a dot product between F and c like you did earlier but using np.dot as we're now working with Numpy format
side[i,:] = np.dot(F, c)
###Storing the position of every points
sides = [[side[0],side[1],side[2],side[3]],
[side[4],side[5],side[6],side[7]],
[side[0],side[1],side[4],side[5]],
[side[2],side[3],side[4],side[5]],
[side[1],side[2],side[5],side[6]],
[side[4],side[7],side[0],side[3]]]
###Scatter plot
ax.scatter(X_new,Y_new,Z_new,c='darkred',marker='o') #the plot of points after rotated
ax.scatter(ox,oy,oz,c='crimson',marker='o') #the previous plot of points before rotated
### Add title
plt.title('Plot_for_PSM', fontsize=20)
plt.gca().invert_yaxis()
##labelling the axes
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
###This draw the plane sides as you wanted
ax.add_collection3d(Poly3DCollection(sides, facecolors='blue', linewidths=1, edgecolors='r', alpha=.25))
cuboid(center, size)
###Mandatory to plot the cube
plt.show()
它使用mpl_toolkits
中的Poly3DCollection, Line3DCollection
画出6个平面正方形,代表立方体的边。
第一步是找到每边的4个坐标。然后你需要使用 Poly3DCollection
来绘制它。
我已经用长方体的中心绘制了我的 8 个角点,如图
我试过散点图,但现在我想要连接这 8 个点的曲面图。
当我尝试使用曲面图时,我无法处理它。你能提出任何解决方案吗
l = 0.3
w = 0.4
h = 0.1
center =
[2.10737, -0.100085, 0.716869]
F=
[[array([[1.]]) array([[-0.001]]) array([[-0.017]])]
[array([[0.]]) array([[-0.999]]) array([[0.037]])]
[array([[0.017]]) array([[0.037]]) array([[0.999]])]]
def cuboid(center, size):
ox, oy, oz = center
l, w, h = size
ax = fig.gca(projection='3d') ##plot the project cuboid
X=[ox-l/2,ox-l/2,ox-l/2,ox-l/2,ox+l/2,ox+l/2,ox+l/2,ox+l/2]
Y=[oy+w/2,oy-w/2,oy-w/2,oy+w/2,oy+w/2,oy-w/2,oy-w/2,oy+w/2]
Z=[oz-h/2,oz-h/2,oz+h/2,oz+h/2,oz+h/2,oz+h/2,oz-h/2,oz-h/2]
X_new = ([])
Y_new = ([])
Z_new = ([])
for i in range(0,8):
c=np.matrix([[X[i]],
[Y[i]],
[Z[i]]])
u=F*c
X_new = np.append(X_new, u.item(0))
Y_new = np.append(Y_new, u.item(1))
Z_new = np.append(Z_new, u.item(2))
ax.scatter(X_new,Y_new,Z_new,c='darkred',marker='o') #the plot of points after rotated
ax.scatter(ox,oy,oz,c='crimson',marker='o') #the previous plot of points before rotated
## Add title
plt.title('Plot_for_PSM', fontsize=20)
plt.gca().invert_yaxis()
##labelling the axes
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
这是一个解决方案。
###Added import
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
###Addded size and center in this format in order to manipulate them easily
size = [0.3, 0.4, 0.1]
center = [2.10737, -0.100085, 0.716869]
###This numpy vector will be used to store the position of the sides
side = np.zeros((8,3))
###Just re-ordered your matrix in some np.arrays
F = [[np.array([1., -0.001, -0.017])],
[np.array([0., -0.999, 0.037])],
[np.array([0.017, 0.037, 0.999])]]
def cuboid(center, size):
ox, oy, oz = center
l, w, h = size
###Added the fig in order to be able to plot it later
fig = plt.figure()
ax = fig.gca(projection='3d') ##plot the project cuboid
X=[ox-l/2,ox-l/2,ox-l/2,ox-l/2,ox+l/2,ox+l/2,ox+l/2,ox+l/2]
Y=[oy+w/2,oy-w/2,oy-w/2,oy+w/2,oy+w/2,oy-w/2,oy-w/2,oy+w/2]
Z=[oz-h/2,oz-h/2,oz+h/2,oz+h/2,oz+h/2,oz+h/2,oz-h/2,oz-h/2]
X_new = ([])
Y_new = ([])
Z_new = ([])
for i in range(0,8):
c=np.matrix([[X[i]],
[Y[i]],
[Z[i]]])
u=F*c
X_new = np.append(X_new, u.item(0))
Y_new = np.append(Y_new, u.item(1))
Z_new = np.append(Z_new, u.item(2))
###Doing a dot product between F and c like you did earlier but using np.dot as we're now working with Numpy format
side[i,:] = np.dot(F, c)
###Storing the position of every points
sides = [[side[0],side[1],side[2],side[3]],
[side[4],side[5],side[6],side[7]],
[side[0],side[1],side[4],side[5]],
[side[2],side[3],side[4],side[5]],
[side[1],side[2],side[5],side[6]],
[side[4],side[7],side[0],side[3]]]
###Scatter plot
ax.scatter(X_new,Y_new,Z_new,c='darkred',marker='o') #the plot of points after rotated
ax.scatter(ox,oy,oz,c='crimson',marker='o') #the previous plot of points before rotated
### Add title
plt.title('Plot_for_PSM', fontsize=20)
plt.gca().invert_yaxis()
##labelling the axes
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
###This draw the plane sides as you wanted
ax.add_collection3d(Poly3DCollection(sides, facecolors='blue', linewidths=1, edgecolors='r', alpha=.25))
cuboid(center, size)
###Mandatory to plot the cube
plt.show()
它使用mpl_toolkits
中的Poly3DCollection, Line3DCollection
画出6个平面正方形,代表立方体的边。
第一步是找到每边的4个坐标。然后你需要使用 Poly3DCollection
来绘制它。