为决策树中的每个数据点找到对应的叶节点 (scikit-learn)
Finding a corresponding leaf node for each data point in a decision tree (scikit-learn)
我正在使用 python 3.4 中 scikit-learn 包中的决策树分类器,我想为我的每个输入数据点获取相应的叶节点 ID。
例如,我的输入可能是这样的:
array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2]])
假设对应的叶节点分别为16、5、45。我希望我的输出是:
leaf_node_id = array([16, 5, 45])
我已经通读了 scikit-learn 邮件列表和关于 SF 的相关问题,但我仍然无法让它工作。这是我在邮件列表中找到的一些提示,但仍然无效。
http://sourceforge.net/p/scikit-learn/mailman/message/31728624/
归根结底,我只想拥有一个函数 GetLeafNode(clf, X_valida) ,使其输出为相应叶节点的列表。下面是重现我收到的错误的代码。因此,我们将不胜感激任何建议。
from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)
# This gives the error message below:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-17-2ecc95213752> in <module>()
----> 1 clf.tree_.apply(X_train)
_tree.pyx in sklearn.tree._tree.Tree.apply (sklearn/tree/_tree.c:19595)()
ValueError: Buffer dtype mismatch, expected 'DTYPE_t' but got 'double'
我终于让它工作了。这是一个基于我在 scikit-learn 邮件列表中的通信 message 的解决方案:
scikit-learn 0.16.1版本后,apply方法在clf.tree_
中实现,因此,我遵循了以下步骤:
- 将 scikit-learn 更新到最新版本 (0.16.1) 以便您可以使用
clf.tree_
中的 apply
方法
- 将输入数据数组(
X_train
、X_valida
)从 float64
转换为 float32
,使用:X_train = X_train.astype('float32')
- 现在你可以这样使用
apply
方法:clf.tree_.apply(X_train)
你会得到每个数据点的叶子节点id。
这是最终代码:
from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# convert data to float32
X_train = X_train.astype('float32')
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)
# This gives the leaf node id:
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2])
从 scikit-learn 0.17 开始,您可以使用 DecisionTree 对象的 apply 方法来获取数据点在树中结束的叶子的索引。基于 neobot 的回答:
from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Compute the leaf node id for each of my training data points
clf.apply(X_train)
产生输出
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2])
我正在使用 python 3.4 中 scikit-learn 包中的决策树分类器,我想为我的每个输入数据点获取相应的叶节点 ID。
例如,我的输入可能是这样的:
array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2]])
假设对应的叶节点分别为16、5、45。我希望我的输出是:
leaf_node_id = array([16, 5, 45])
我已经通读了 scikit-learn 邮件列表和关于 SF 的相关问题,但我仍然无法让它工作。这是我在邮件列表中找到的一些提示,但仍然无效。
http://sourceforge.net/p/scikit-learn/mailman/message/31728624/
归根结底,我只想拥有一个函数 GetLeafNode(clf, X_valida) ,使其输出为相应叶节点的列表。下面是重现我收到的错误的代码。因此,我们将不胜感激任何建议。
from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)
# This gives the error message below:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-17-2ecc95213752> in <module>()
----> 1 clf.tree_.apply(X_train)
_tree.pyx in sklearn.tree._tree.Tree.apply (sklearn/tree/_tree.c:19595)()
ValueError: Buffer dtype mismatch, expected 'DTYPE_t' but got 'double'
我终于让它工作了。这是一个基于我在 scikit-learn 邮件列表中的通信 message 的解决方案:
scikit-learn 0.16.1版本后,apply方法在clf.tree_
中实现,因此,我遵循了以下步骤:
- 将 scikit-learn 更新到最新版本 (0.16.1) 以便您可以使用
clf.tree_
中的 - 将输入数据数组(
X_train
、X_valida
)从float64
转换为float32
,使用:X_train = X_train.astype('float32')
- 现在你可以这样使用
apply
方法:clf.tree_.apply(X_train)
你会得到每个数据点的叶子节点id。
apply
方法
这是最终代码:
from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# convert data to float32
X_train = X_train.astype('float32')
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)
# This gives the leaf node id:
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2])
从 scikit-learn 0.17 开始,您可以使用 DecisionTree 对象的 apply 方法来获取数据点在树中结束的叶子的索引。基于 neobot 的回答:
from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Compute the leaf node id for each of my training data points
clf.apply(X_train)
产生输出
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2])