为决策树中的每个数据点找到对应的叶节点 (scikit-learn)

Finding a corresponding leaf node for each data point in a decision tree (scikit-learn)

我正在使用 python 3.4 中 scikit-learn 包中的决策树分类器,我想为我的每个输入数据点获取相应的叶节点 ID。

例如,我的输入可能是这样的:

array([[ 5.1,  3.5,  1.4,  0.2],
       [ 4.9,  3. ,  1.4,  0.2],
       [ 4.7,  3.2,  1.3,  0.2]])

假设对应的叶节点分别为16、5、45。我希望我的输出是:

leaf_node_id = array([16, 5, 45])

我已经通读了 scikit-learn 邮件列表和关于 SF 的相关问题,但我仍然无法让它工作。这是我在邮件列表中找到的一些提示,但仍然无效。

http://sourceforge.net/p/scikit-learn/mailman/message/31728624/

归根结底,我只想拥有一个函数 GetLeafNode(clf, X_valida) ,使其输出为相应叶节点的列表。下面是重现我收到的错误的代码。因此,我们将不胜感激任何建议。

from sklearn.datasets import load_iris
from sklearn import tree

# load data and divide it to train and validation
iris = load_iris()

num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]

y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]

# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)

# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)

# This gives the error message below:
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-17-2ecc95213752> in <module>()
----> 1 clf.tree_.apply(X_train)

_tree.pyx in sklearn.tree._tree.Tree.apply (sklearn/tree/_tree.c:19595)()

ValueError: Buffer dtype mismatch, expected 'DTYPE_t' but got 'double'

我终于让它工作了。这是一个基于我在 scikit-learn 邮件列表中的通信 message 的解决方案:

scikit-learn 0.16.1版本后,apply方法在clf.tree_中实现,因此,我遵循了以下步骤:

  1. 将 scikit-learn 更新到最新版本 (0.16.1) 以便您可以使用 clf.tree_
  2. 中的 apply 方法
  3. 将输入数据数组(X_trainX_valida)从 float64 转换为 float32,使用:X_train = X_train.astype('float32')
  4. 现在你可以这样使用apply方法:clf.tree_.apply(X_train)你会得到每个数据点的叶子节点id。

这是最终代码:

from sklearn.datasets import load_iris
from sklearn import tree

# load data and divide it to train and validation
iris = load_iris()

num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]

y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]

# convert data to float32
X_train = X_train.astype('float32')

# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)

# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)

# This gives the leaf node id:
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2])

从 scikit-learn 0.17 开始,您可以使用 DecisionTree 对象的 apply 方法来获取数据点在树中结束的叶子的索引。基于 neobot 的回答:

from sklearn.datasets import load_iris
from sklearn import tree

# load data and divide it to train and validation
iris = load_iris()

num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]

y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]

# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)

# Compute the leaf node id for each of my training data points
clf.apply(X_train)

产生输出

array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2])