action_space 有什么用?
What is the action_space for?
我正在 OpenAI Gym 中制作自定义环境,真的不明白,action_space 是做什么用的?我应该在里面放什么?准确地说,我不知道什么是 action_space,我没有在任何代码中使用它。而且我在网上也没有找到任何可以正常回答我问题的东西。
gym环境中使用的action_space
是用来定义环境动作space的特征。这样,就可以说明动作 space 是连续的还是离散的,定义动作的最小值和最大值等
连续动作space可以使用Boxclass。
import gym
from gym import spaces
class MyEnv(gym.Env):
def __init__(self):
# set 2 dimensional continuous action space as continuous
# [-1,2] for first dimension and [-2,4] for second dimension
self.action_space = spaces.Box(np.array([-1,-2]),np.array([2,4]),dtype=np.float32)
对于离散的可以使用Discrete class.
import gym
from gym import spaces
class MyEnv(gym.Env):
def __init__(self):
# set 2 dimensional action space as discrete {0,1}
self.action_space = spaces.Discrete(2)
如果您有任何其他要求,可以查看 OpenAI gym 存储库中的 this 文件夹。您还可以通过 gym 文件夹中给出的不同环境来获取 action_space
和 observation_space
.
用法的更多示例
此外,通过 core.py 了解所有 methods/functions 是与健身房兼容的环境所必需的。
The main OpenAI Gym class. It encapsulates an environment with
arbitrary behind-the-scenes dynamics. An environment can be
partially or fully observed.
The main API methods that users of this class need to know are:
step
reset
render
close
seed
And set the following attributes:
action_space: The Space object corresponding to valid actions
observation_space: The Space object corresponding to valid observations
reward_range: A tuple corresponding to the min and max possible rewards
Note: a default reward range set to [-inf,+inf] already exists. Set it if you want a narrower range.
The methods are accessed publicly as "step", "reset", etc.. The
non-underscored versions are wrapper methods to which we may add
functionality over time.
我正在 OpenAI Gym 中制作自定义环境,真的不明白,action_space 是做什么用的?我应该在里面放什么?准确地说,我不知道什么是 action_space,我没有在任何代码中使用它。而且我在网上也没有找到任何可以正常回答我问题的东西。
gym环境中使用的action_space
是用来定义环境动作space的特征。这样,就可以说明动作 space 是连续的还是离散的,定义动作的最小值和最大值等
连续动作space可以使用Boxclass。
import gym
from gym import spaces
class MyEnv(gym.Env):
def __init__(self):
# set 2 dimensional continuous action space as continuous
# [-1,2] for first dimension and [-2,4] for second dimension
self.action_space = spaces.Box(np.array([-1,-2]),np.array([2,4]),dtype=np.float32)
对于离散的可以使用Discrete class.
import gym
from gym import spaces
class MyEnv(gym.Env):
def __init__(self):
# set 2 dimensional action space as discrete {0,1}
self.action_space = spaces.Discrete(2)
如果您有任何其他要求,可以查看 OpenAI gym 存储库中的 this 文件夹。您还可以通过 gym 文件夹中给出的不同环境来获取 action_space
和 observation_space
.
此外,通过 core.py 了解所有 methods/functions 是与健身房兼容的环境所必需的。
The main OpenAI Gym class. It encapsulates an environment with
arbitrary behind-the-scenes dynamics. An environment can be
partially or fully observed.
The main API methods that users of this class need to know are:
step
reset
render
close
seed
And set the following attributes:
action_space: The Space object corresponding to valid actions
observation_space: The Space object corresponding to valid observations
reward_range: A tuple corresponding to the min and max possible rewards
Note: a default reward range set to [-inf,+inf] already exists. Set it if you want a narrower range.
The methods are accessed publicly as "step", "reset", etc.. The
non-underscored versions are wrapper methods to which we may add
functionality over time.