为什么TF-IDF的值和IDF_不一样?
Why is the value of TF-IDF different from IDF_?
为什么矢量化语料的值和通过idf_
属性得到的值不一样? idf_
属性不应该只是 return 逆文档频率 (IDF),就像它出现在语料库矢量化中一样吗?
from sklearn.feature_extraction.text import TfidfVectorizer
corpus = ["This is very strange",
"This is very nice"]
vectorizer = TfidfVectorizer()
corpus = vectorizer.fit_transform(corpus)
print(corpus)
矢量化语料库:
(0, 2) 0.6300993445179441
(0, 4) 0.44832087319911734
(0, 0) 0.44832087319911734
(0, 3) 0.44832087319911734
(1, 1) 0.6300993445179441
(1, 4) 0.44832087319911734
(1, 0) 0.44832087319911734
(1, 3) 0.44832087319911734
词汇和idf_
值:
print(dict(zip(vectorizer.vocabulary_, vectorizer.idf_)))
输出:
{'this': 1.0,
'is': 1.4054651081081644,
'very': 1.4054651081081644,
'strange': 1.0,
'nice': 1.0}
词汇索引:
print(vectorizer.vocabulary_)
输出:
{'this': 3,
'is': 0,
'very': 4,
'strange': 2,
'nice': 1}
为什么词this
的IDF值在语料库中是0.44
而idf_
得到的是1.0
?
这是因为 l2
标准化,它在 TfidfVectorizer()
中默认应用。
如果将 norm
参数设置为 None
,您将获得与 idf_
.
相同的值
>>> vectorizer = TfidfVectorizer(norm=None)
#output
(0, 2) 1.4054651081081644
(0, 4) 1.0
(0, 0) 1.0
(0, 3) 1.0
(1, 1) 1.4054651081081644
(1, 4) 1.0
(1, 0) 1.0
(1, 3) 1.0
此外,您计算特征对应的 idf 值的方法是错误的,因为 dict
不保留顺序。
使用:
>>>> print(dict(zip(vectorizer.get_feature_names(), vectorizer.idf_)))
{'is': 1.0,
'nice': 1.4054651081081644,
'strange': 1.4054651081081644,
'this': 1.0,
'very': 1.0}
为什么矢量化语料的值和通过idf_
属性得到的值不一样? idf_
属性不应该只是 return 逆文档频率 (IDF),就像它出现在语料库矢量化中一样吗?
from sklearn.feature_extraction.text import TfidfVectorizer
corpus = ["This is very strange",
"This is very nice"]
vectorizer = TfidfVectorizer()
corpus = vectorizer.fit_transform(corpus)
print(corpus)
矢量化语料库:
(0, 2) 0.6300993445179441
(0, 4) 0.44832087319911734
(0, 0) 0.44832087319911734
(0, 3) 0.44832087319911734
(1, 1) 0.6300993445179441
(1, 4) 0.44832087319911734
(1, 0) 0.44832087319911734
(1, 3) 0.44832087319911734
词汇和idf_
值:
print(dict(zip(vectorizer.vocabulary_, vectorizer.idf_)))
输出:
{'this': 1.0,
'is': 1.4054651081081644,
'very': 1.4054651081081644,
'strange': 1.0,
'nice': 1.0}
词汇索引:
print(vectorizer.vocabulary_)
输出:
{'this': 3,
'is': 0,
'very': 4,
'strange': 2,
'nice': 1}
为什么词this
的IDF值在语料库中是0.44
而idf_
得到的是1.0
?
这是因为 l2
标准化,它在 TfidfVectorizer()
中默认应用。
如果将 norm
参数设置为 None
,您将获得与 idf_
.
>>> vectorizer = TfidfVectorizer(norm=None)
#output
(0, 2) 1.4054651081081644
(0, 4) 1.0
(0, 0) 1.0
(0, 3) 1.0
(1, 1) 1.4054651081081644
(1, 4) 1.0
(1, 0) 1.0
(1, 3) 1.0
此外,您计算特征对应的 idf 值的方法是错误的,因为 dict
不保留顺序。
使用:
>>>> print(dict(zip(vectorizer.get_feature_names(), vectorizer.idf_)))
{'is': 1.0,
'nice': 1.4054651081081644,
'strange': 1.4054651081081644,
'this': 1.0,
'very': 1.0}