如何在切片本身是张量流中的张量时进行切片分配
how to do slice assignment while the slice itself is a tensor in tensorflow
我想在tensorflow中做切片赋值。我知道我可以使用:
my_var = my_var[4:8].assign(tf.zeros(4))
基于此。
如您在 my_var[4:8]
中所见,我们在这里有特定的索引 4、8 用于切片然后赋值。
我的情况不同我想基于张量做切片然后做赋值。
out = tf.Variable(tf.zeros(shape=[8,4], dtype=tf.float32))
rows_tf = tf.constant (
[[1, 2, 5],
[1, 2, 5],
[1, 2, 5],
[1, 4, 6],
[1, 4, 6],
[2, 3, 6],
[2, 3, 6],
[2, 4, 7]])
columns_tf = tf.constant(
[[1],
[2],
[3],
[2],
[3],
[2],
[3],
[2]])
changed_tensor = [[8.3356, 0., 8.457685 ],
[0., 6.103182, 8.602337 ],
[8.8974, 7.330564, 0. ],
[0., 3.8914037, 5.826657 ],
[8.8974, 0., 8.283971 ],
[6.103182, 3.0614321, 5.826657 ],
[7.330564, 0., 8.283971 ],
[6.103182, 3.8914037, 0. ]]
此外,这是 sparse_indices
张量,它是 rows_tf
和 columns_tf
的连接,使整个索引需要更新(如果它可以帮助:)
sparse_indices = tf.constant(
[[1 1]
[2 1]
[5 1]
[1 2]
[2 2]
[5 2]
[1 3]
[2 3]
[5 3]
[1 2]
[4 2]
[6 2]
[1 3]
[4 3]
[6 3]
[2 2]
[3 2]
[6 2]
[2 3]
[3 3]
[6 3]
[2 2]
[4 2]
[4 2]])
我想做的是做这个简单的作业:
out[rows_tf, columns_tf] = changed_tensor
为此,我正在这样做:
out[rows_tf:column_tf].assign(changed_tensor)
但是,我收到了这个错误:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Expected begin, end, and strides to be 1D equal size tensors, but got shapes [1,8,3], [1,8,1], and [1] instead. [Op:StridedSlice] name: strided_slice/
这是预期的输出:
[[0. 0. 0. 0. ]
[0. 8.3356 0. 8.8974 ]
[0. 0. 6.103182 7.330564 ]
[0. 0. 3.0614321 0. ]
[0. 0. 3.8914037 0. ]
[0. 8.457685 8.602337 0. ]
[0. 0. 5.826657 8.283971 ]
[0. 0. 0. 0. ]]
知道我怎样才能完成这个任务吗?
提前谢谢你:)
这个例子(扩展自 tf 文档 tf.scatter_nd_update
here)应该有所帮助。
您想首先将 row_indices 和 column_indices 组合成二维索引列表,即 tf.scatter_nd_update
的 indices
参数。然后你输入了一个期望值列表,即 updates
.
ref = tf.Variable(tf.zeros(shape=[8,4], dtype=tf.float32))
indices = tf.constant([[0, 2], [2, 2]])
updates = tf.constant([1.0, 2.0])
update = tf.scatter_nd_update(ref, indices, updates)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print sess.run(update)
Result:
[[ 0. 0. 1. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 2. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
专为您的数据,
ref = tf.Variable(tf.zeros(shape=[8,4], dtype=tf.float32))
changed_tensor = [[8.3356, 0., 8.457685 ],
[0., 6.103182, 8.602337 ],
[8.8974, 7.330564, 0. ],
[0., 3.8914037, 5.826657 ],
[8.8974, 0., 8.283971 ],
[6.103182, 3.0614321, 5.826657 ],
[7.330564, 0., 8.283971 ],
[6.103182, 3.8914037, 0. ]]
updates = tf.reshape(changed_tensor, shape=[-1])
sparse_indices = tf.constant(
[[1, 1],
[2, 1],
[5, 1],
[1, 2],
[2, 2],
[5, 2],
[1, 3],
[2, 3],
[5, 3],
[1, 2],
[4, 2],
[6, 2],
[1, 3],
[4, 3],
[6, 3],
[2, 2],
[3, 2],
[6, 2],
[2, 3],
[3, 3],
[6, 3],
[2, 2],
[4, 2],
[4, 2]])
update = tf.scatter_nd_update(ref, sparse_indices, updates)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print sess.run(update)
Result:
[[ 0. 0. 0. 0. ]
[ 0. 8.3355999 0. 8.8973999 ]
[ 0. 0. 6.10318184 7.33056402]
[ 0. 0. 3.06143212 0. ]
[ 0. 0. 0. 0. ]
[ 0. 8.45768547 8.60233688 0. ]
[ 0. 0. 5.82665682 8.28397083]
[ 0. 0. 0. 0. ]]
我想在tensorflow中做切片赋值。我知道我可以使用:
my_var = my_var[4:8].assign(tf.zeros(4))
基于此
如您在 my_var[4:8]
中所见,我们在这里有特定的索引 4、8 用于切片然后赋值。
我的情况不同我想基于张量做切片然后做赋值。
out = tf.Variable(tf.zeros(shape=[8,4], dtype=tf.float32))
rows_tf = tf.constant (
[[1, 2, 5],
[1, 2, 5],
[1, 2, 5],
[1, 4, 6],
[1, 4, 6],
[2, 3, 6],
[2, 3, 6],
[2, 4, 7]])
columns_tf = tf.constant(
[[1],
[2],
[3],
[2],
[3],
[2],
[3],
[2]])
changed_tensor = [[8.3356, 0., 8.457685 ],
[0., 6.103182, 8.602337 ],
[8.8974, 7.330564, 0. ],
[0., 3.8914037, 5.826657 ],
[8.8974, 0., 8.283971 ],
[6.103182, 3.0614321, 5.826657 ],
[7.330564, 0., 8.283971 ],
[6.103182, 3.8914037, 0. ]]
此外,这是 sparse_indices
张量,它是 rows_tf
和 columns_tf
的连接,使整个索引需要更新(如果它可以帮助:)
sparse_indices = tf.constant(
[[1 1]
[2 1]
[5 1]
[1 2]
[2 2]
[5 2]
[1 3]
[2 3]
[5 3]
[1 2]
[4 2]
[6 2]
[1 3]
[4 3]
[6 3]
[2 2]
[3 2]
[6 2]
[2 3]
[3 3]
[6 3]
[2 2]
[4 2]
[4 2]])
我想做的是做这个简单的作业:
out[rows_tf, columns_tf] = changed_tensor
为此,我正在这样做:
out[rows_tf:column_tf].assign(changed_tensor)
但是,我收到了这个错误:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Expected begin, end, and strides to be 1D equal size tensors, but got shapes [1,8,3], [1,8,1], and [1] instead. [Op:StridedSlice] name: strided_slice/
这是预期的输出:
[[0. 0. 0. 0. ]
[0. 8.3356 0. 8.8974 ]
[0. 0. 6.103182 7.330564 ]
[0. 0. 3.0614321 0. ]
[0. 0. 3.8914037 0. ]
[0. 8.457685 8.602337 0. ]
[0. 0. 5.826657 8.283971 ]
[0. 0. 0. 0. ]]
知道我怎样才能完成这个任务吗?
提前谢谢你:)
这个例子(扩展自 tf 文档 tf.scatter_nd_update
here)应该有所帮助。
您想首先将 row_indices 和 column_indices 组合成二维索引列表,即 tf.scatter_nd_update
的 indices
参数。然后你输入了一个期望值列表,即 updates
.
ref = tf.Variable(tf.zeros(shape=[8,4], dtype=tf.float32))
indices = tf.constant([[0, 2], [2, 2]])
updates = tf.constant([1.0, 2.0])
update = tf.scatter_nd_update(ref, indices, updates)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print sess.run(update)
Result:
[[ 0. 0. 1. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 2. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
专为您的数据,
ref = tf.Variable(tf.zeros(shape=[8,4], dtype=tf.float32))
changed_tensor = [[8.3356, 0., 8.457685 ],
[0., 6.103182, 8.602337 ],
[8.8974, 7.330564, 0. ],
[0., 3.8914037, 5.826657 ],
[8.8974, 0., 8.283971 ],
[6.103182, 3.0614321, 5.826657 ],
[7.330564, 0., 8.283971 ],
[6.103182, 3.8914037, 0. ]]
updates = tf.reshape(changed_tensor, shape=[-1])
sparse_indices = tf.constant(
[[1, 1],
[2, 1],
[5, 1],
[1, 2],
[2, 2],
[5, 2],
[1, 3],
[2, 3],
[5, 3],
[1, 2],
[4, 2],
[6, 2],
[1, 3],
[4, 3],
[6, 3],
[2, 2],
[3, 2],
[6, 2],
[2, 3],
[3, 3],
[6, 3],
[2, 2],
[4, 2],
[4, 2]])
update = tf.scatter_nd_update(ref, sparse_indices, updates)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print sess.run(update)
Result:
[[ 0. 0. 0. 0. ]
[ 0. 8.3355999 0. 8.8973999 ]
[ 0. 0. 6.10318184 7.33056402]
[ 0. 0. 3.06143212 0. ]
[ 0. 0. 0. 0. ]
[ 0. 8.45768547 8.60233688 0. ]
[ 0. 0. 5.82665682 8.28397083]
[ 0. 0. 0. 0. ]]