Bellman-ford 算法是否总能检测到加权有向图中的负圆?
Does Bellman-ford algorithm always can detect the negative circle in weighted digraph or not?
这是我的代码:
#include<stdio.h>
#include<stdlib.h>
#define inf 99999999
#define vertex 5
#define edge 6
int main(){
int dis[vertex]={
0,inf,inf,inf,inf
};
int bak[vertex];
int u[edge],v[edge],w[edge];
int i,
k,
check = 0,
flag = 0,
count = 0;
for(i = 0 ;i<edge;i++){
scanf("%d %d %d\n",&u[i],&v[i],&w[i]);
}
// test if data is received correctly
for(i = 0 ; i<edge;i++){
printf("%d %d %d\n",u[i],v[i],w[i]);
}
//test_end
for(k = 0 ;k<vertex-1;k++){ // relax at most vertex-1 time
count ++;
/* check = 0; */
/* for(i = 0 ;i<vertex ;i++){ */
/* bak[i] = dis[i]; */
/* } */
for(i = 0 ;i<edge;i++){
if(dis[v[i]] > dis[u[i]] + w[i]){
dis[v[i]] = dis[u[i]] + w[i];
}
}
/* for(i = 0;i<vertex;i++){ */
/* if(bak[i] != dis[i]){ */
/* check = 1; */
/* break; */
/* } */
/* } */
/* if(check == 0){ */
/* break; */
/* } */
}
// test if have negative circle
for(i = 0 ; i< edge ;i++){
if(dis[v[i]] > dis[u[i]] + w[i])
flag = 1;
}
//test_end
if(flag == 1){
printf("Have circle\n");
}
else{
printf("No circle\n");
for(i = 0 ; i< vertex;i++){
printf("%d ",dis[i]);
}
}
printf("\ncount = %d \n",count);
return 0;
}
这是我的测试数据:
1 2 2
0 1 -3
0 4 5
3 4 2
2 3 3
3 1 -3
结果在我的电脑中:
1 2 2
0 1 -3
0 4 5
3 4 2
2 3 3
3 1 -3
No circle
0 -3 -1 2 4
count = 4
但是,这个加权有向图确实有负圆
I misunderstanding the conception of negative circle. What I said
above was nonsense. This test weighted digraph contains no negative circle.
然后我画了一幅画:
圆是1->2->3->1
但是程序没有报告。
分析最后的数据:
3 1 -3
//下面的代码是测试是否有负圆。
符号 i 已经迭代到 5
if(dis[v[i]] > dis[v[i]] + w[i]){
flag = 1;
}
//dis[1] now is -3 ,
//dis[3] now is 2 ,
//w[5] is -3
-3 > 2 + (-3) 为假!
这就是问题所在,
如果我把3->1的权重设置为-100,算法就可以检测到负圆
1 2 2
0 1 -3
0 4 5
3 4 2
2 3 3
3 1 -100
Have circle
count = 4
那么Bellman-ford就是这种性格吗?
是的,Bellman–Ford 算法总能检测到负循环。如果存在负循环(例如,当您将 3->1 设置为 -100 时),则图形不包含最短路径,因为您始终可以留在循环中并获得 更多 个负值。
参见例如Wikipedia.
是的,毫无疑问,Bellman-ford 将以 100% 的准确度检测负循环。如果你的程序是 C++,你可以应用这个函数:
#include <vector>
#include <set>
#include <utility>
#include <cstring>
using namespace std;
//Declare Global Variable for Data passing
#define MAX_NODE 1010 // 1 Million
#define INFINITY 1000000 // 1 Million
typedef pair<pair<int,int>,int> P; // 1-->2, Cost:3, then pair(node:1 node:2,cost:3)
vector<P> edgeList;
set<int> nodeList; // List of all nodes. Set prevents duplication.
int outDist[MAX_NODE];
int outPre[MAX_NODE];
bool BellmanFord(int source){
// Initialize outDist
for(int i=0;i<MAX_NODE;i++){
outDist[i] = INFINITY;
}
//Initialize outPre
memset(outPre,-1,sizeof(outPre));
vector<P>::iterator edgeListItrEnd;
vector<P>::iterator edgeListItrStart;
P tmpPair;
//we assume source distance is zero.
outDist[source] = 0;
int i,totalNode,rightNode,weight,leftNode;
bool isComplete;
totalNode = nodeList.size();
edgeListItrEnd = edgeList.end();
// Go through node 1 to N-1
for(i=1; i<totalNode;i++){
edgeListItrStart = edgeList.begin();
// Iterate over all Edges
isComplete = true;
while(edgeListItrStart<edgeListItrEnd){
tmpPair = *edgeListItrStart;
leftNode = tmpPair.first.first;
rightNode = tmpPair.first.second;
weight = tmpPair.second;
if((outDist[leftNode] != INFINITY) && (outDist[leftNode] + weight < outDist[rightNode])){
//cout<<outDist[leftNode]<<" + "<<weight<<" < "<<outDist[rightNode]<<endl;
isComplete = false;
outDist[rightNode] = outDist[leftNode] + weight;
outPre[rightNode] = leftNode;
}
edgeListItrStart++;
}
if(isComplete) return true;
}
// Check for Negative cycle;
// Iterate over all edges
edgeListItrStart = edgeList.begin();
while(edgeListItrStart<edgeListItrEnd){
tmpPair = *edgeListItrStart;
leftNode = tmpPair.first.first;
rightNode = tmpPair.first.second;
weight = tmpPair.second;
if((outDist[leftNode] != INFINITY) && (outDist[leftNode] + weight < outDist[rightNode])){
return false;
}
edgeListItrStart++;
}
return true;
}
您可以在此处查看用途:https://kt48.wordpress.com/2015/06/16/bellman-ford-algorithm-c-implementation/
这是我的代码:
#include<stdio.h>
#include<stdlib.h>
#define inf 99999999
#define vertex 5
#define edge 6
int main(){
int dis[vertex]={
0,inf,inf,inf,inf
};
int bak[vertex];
int u[edge],v[edge],w[edge];
int i,
k,
check = 0,
flag = 0,
count = 0;
for(i = 0 ;i<edge;i++){
scanf("%d %d %d\n",&u[i],&v[i],&w[i]);
}
// test if data is received correctly
for(i = 0 ; i<edge;i++){
printf("%d %d %d\n",u[i],v[i],w[i]);
}
//test_end
for(k = 0 ;k<vertex-1;k++){ // relax at most vertex-1 time
count ++;
/* check = 0; */
/* for(i = 0 ;i<vertex ;i++){ */
/* bak[i] = dis[i]; */
/* } */
for(i = 0 ;i<edge;i++){
if(dis[v[i]] > dis[u[i]] + w[i]){
dis[v[i]] = dis[u[i]] + w[i];
}
}
/* for(i = 0;i<vertex;i++){ */
/* if(bak[i] != dis[i]){ */
/* check = 1; */
/* break; */
/* } */
/* } */
/* if(check == 0){ */
/* break; */
/* } */
}
// test if have negative circle
for(i = 0 ; i< edge ;i++){
if(dis[v[i]] > dis[u[i]] + w[i])
flag = 1;
}
//test_end
if(flag == 1){
printf("Have circle\n");
}
else{
printf("No circle\n");
for(i = 0 ; i< vertex;i++){
printf("%d ",dis[i]);
}
}
printf("\ncount = %d \n",count);
return 0;
}
这是我的测试数据:
1 2 2
0 1 -3
0 4 5
3 4 2
2 3 3
3 1 -3
结果在我的电脑中:
1 2 2
0 1 -3
0 4 5
3 4 2
2 3 3
3 1 -3
No circle
0 -3 -1 2 4
count = 4
但是,这个加权有向图确实有负圆
I misunderstanding the conception of negative circle. What I said above was nonsense. This test weighted digraph contains no negative circle.
然后我画了一幅画:
圆是1->2->3->1
但是程序没有报告。
分析最后的数据:
3 1 -3
//下面的代码是测试是否有负圆。 符号 i 已经迭代到 5
if(dis[v[i]] > dis[v[i]] + w[i]){
flag = 1;
}
//dis[1] now is -3 ,
//dis[3] now is 2 ,
//w[5] is -3
-3 > 2 + (-3) 为假!
这就是问题所在,
如果我把3->1的权重设置为-100,算法就可以检测到负圆
1 2 2
0 1 -3
0 4 5
3 4 2
2 3 3
3 1 -100
Have circle
count = 4
那么Bellman-ford就是这种性格吗?
是的,Bellman–Ford 算法总能检测到负循环。如果存在负循环(例如,当您将 3->1 设置为 -100 时),则图形不包含最短路径,因为您始终可以留在循环中并获得 更多 个负值。
参见例如Wikipedia.
是的,毫无疑问,Bellman-ford 将以 100% 的准确度检测负循环。如果你的程序是 C++,你可以应用这个函数:
#include <vector>
#include <set>
#include <utility>
#include <cstring>
using namespace std;
//Declare Global Variable for Data passing
#define MAX_NODE 1010 // 1 Million
#define INFINITY 1000000 // 1 Million
typedef pair<pair<int,int>,int> P; // 1-->2, Cost:3, then pair(node:1 node:2,cost:3)
vector<P> edgeList;
set<int> nodeList; // List of all nodes. Set prevents duplication.
int outDist[MAX_NODE];
int outPre[MAX_NODE];
bool BellmanFord(int source){
// Initialize outDist
for(int i=0;i<MAX_NODE;i++){
outDist[i] = INFINITY;
}
//Initialize outPre
memset(outPre,-1,sizeof(outPre));
vector<P>::iterator edgeListItrEnd;
vector<P>::iterator edgeListItrStart;
P tmpPair;
//we assume source distance is zero.
outDist[source] = 0;
int i,totalNode,rightNode,weight,leftNode;
bool isComplete;
totalNode = nodeList.size();
edgeListItrEnd = edgeList.end();
// Go through node 1 to N-1
for(i=1; i<totalNode;i++){
edgeListItrStart = edgeList.begin();
// Iterate over all Edges
isComplete = true;
while(edgeListItrStart<edgeListItrEnd){
tmpPair = *edgeListItrStart;
leftNode = tmpPair.first.first;
rightNode = tmpPair.first.second;
weight = tmpPair.second;
if((outDist[leftNode] != INFINITY) && (outDist[leftNode] + weight < outDist[rightNode])){
//cout<<outDist[leftNode]<<" + "<<weight<<" < "<<outDist[rightNode]<<endl;
isComplete = false;
outDist[rightNode] = outDist[leftNode] + weight;
outPre[rightNode] = leftNode;
}
edgeListItrStart++;
}
if(isComplete) return true;
}
// Check for Negative cycle;
// Iterate over all edges
edgeListItrStart = edgeList.begin();
while(edgeListItrStart<edgeListItrEnd){
tmpPair = *edgeListItrStart;
leftNode = tmpPair.first.first;
rightNode = tmpPair.first.second;
weight = tmpPair.second;
if((outDist[leftNode] != INFINITY) && (outDist[leftNode] + weight < outDist[rightNode])){
return false;
}
edgeListItrStart++;
}
return true;
}
您可以在此处查看用途:https://kt48.wordpress.com/2015/06/16/bellman-ford-algorithm-c-implementation/