为什么我的 TensorFlow 模型的平均精度是 -1.000?
Why is the Average Precision of my TensorFlow model -1.000?
我已经训练 object_detection TensorFlow 模型一段时间了,但我注意到评估 table 总是显示 -1.000 的值,而我见过其他人们的输出显示 0 到 1 之间的各种值。我的 TFRecords 有什么问题吗?我已经评估了输出,在几千步之后模型肯定在改进,所以我不确定为什么总是这样。谢谢!
我的输出:
Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = -1.000
Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = -1.000
Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = -1.000
Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = -1.000
Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = -1.000
Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = -1.000
Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
My TensorBoard Output
我的 pipeline.config 文件:
model {
ssd {
num_classes: 2
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
feature_extractor {
type: "ssd_mobilenet_v1"
depth_multiplier: 1.0
min_depth: 16
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.0299999993294
}
}
activation: RELU_6
batch_norm {
decay: 0.999700009823
center: true
scale: true
epsilon: 0.0010000000475
train: true
}
}
}
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
box_predictor {
convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.0299999993294
}
}
activation: RELU_6
batch_norm {
decay: 0.999700009823
center: true
scale: true
epsilon: 0.0010000000475
train: true
}
}
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.800000011921
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.20000000298
max_scale: 0.949999988079
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.333299994469
}
}
post_processing {
batch_non_max_suppression {
score_threshold: 0.300000011921
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
normalize_loss_by_num_matches: true
loss {
localization_loss {
weighted_smooth_l1 {
}
}
classification_loss {
weighted_sigmoid {
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.990000009537
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
}
}
train_config {
batch_size: 24
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
optimizer {
rms_prop_optimizer {
learning_rate {
exponential_decay_learning_rate {
initial_learning_rate: 0.00400000018999
decay_steps: 800720
decay_factor: 0.949999988079
}
}
momentum_optimizer_value: 0.899999976158
decay: 0.899999976158
epsilon: 1.0
}
}
fine_tune_checkpoint: "pretrained_model/model.ckpt"
from_detection_checkpoint: true
num_steps: 300
}
train_input_reader {
label_map_path: "./CMFCD/pascal_label_map.pbtxt"
tf_record_input_reader {
input_path: "./CMFCD/data/annotations/train.record"
}
}
eval_config {
num_examples: 47
max_evals: 10
use_moving_averages: false
}
eval_input_reader {
label_map_path: "./CMFCD/pascal_label_map.pbtxt"
shuffle: false
num_readers: 1
tf_record_input_reader {
input_path: "./CMFCD/data/annotations/test.record"
}
}
编辑 - 解决方案:
这是因为我用来生成 TFRecords 的脚本已经过时,并且创建了没有边界框、只有图像的空记录。我找到了 updated script 并使用了它,现在它工作正常。
一般来说,这意味着检测器没有产生任何具有有意义的置信度分数的检测(所有检测的置信度为零),因此在评估 AP 时没有什么可评估的,而 COCO API 评估代码returns-1.0
我已经训练 object_detection TensorFlow 模型一段时间了,但我注意到评估 table 总是显示 -1.000 的值,而我见过其他人们的输出显示 0 到 1 之间的各种值。我的 TFRecords 有什么问题吗?我已经评估了输出,在几千步之后模型肯定在改进,所以我不确定为什么总是这样。谢谢!
我的输出:
Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = -1.000
Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = -1.000
Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = -1.000
Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = -1.000
Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = -1.000
Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = -1.000
Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
My TensorBoard Output
我的 pipeline.config 文件:
model {
ssd {
num_classes: 2
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
feature_extractor {
type: "ssd_mobilenet_v1"
depth_multiplier: 1.0
min_depth: 16
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.0299999993294
}
}
activation: RELU_6
batch_norm {
decay: 0.999700009823
center: true
scale: true
epsilon: 0.0010000000475
train: true
}
}
}
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
box_predictor {
convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.0299999993294
}
}
activation: RELU_6
batch_norm {
decay: 0.999700009823
center: true
scale: true
epsilon: 0.0010000000475
train: true
}
}
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.800000011921
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.20000000298
max_scale: 0.949999988079
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.333299994469
}
}
post_processing {
batch_non_max_suppression {
score_threshold: 0.300000011921
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
normalize_loss_by_num_matches: true
loss {
localization_loss {
weighted_smooth_l1 {
}
}
classification_loss {
weighted_sigmoid {
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.990000009537
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
}
}
train_config {
batch_size: 24
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
optimizer {
rms_prop_optimizer {
learning_rate {
exponential_decay_learning_rate {
initial_learning_rate: 0.00400000018999
decay_steps: 800720
decay_factor: 0.949999988079
}
}
momentum_optimizer_value: 0.899999976158
decay: 0.899999976158
epsilon: 1.0
}
}
fine_tune_checkpoint: "pretrained_model/model.ckpt"
from_detection_checkpoint: true
num_steps: 300
}
train_input_reader {
label_map_path: "./CMFCD/pascal_label_map.pbtxt"
tf_record_input_reader {
input_path: "./CMFCD/data/annotations/train.record"
}
}
eval_config {
num_examples: 47
max_evals: 10
use_moving_averages: false
}
eval_input_reader {
label_map_path: "./CMFCD/pascal_label_map.pbtxt"
shuffle: false
num_readers: 1
tf_record_input_reader {
input_path: "./CMFCD/data/annotations/test.record"
}
}
编辑 - 解决方案: 这是因为我用来生成 TFRecords 的脚本已经过时,并且创建了没有边界框、只有图像的空记录。我找到了 updated script 并使用了它,现在它工作正常。
一般来说,这意味着检测器没有产生任何具有有意义的置信度分数的检测(所有检测的置信度为零),因此在评估 AP 时没有什么可评估的,而 COCO API 评估代码returns-1.0