如何应对由面向 relu 的 CNN 产生的巨大数字
How to combat huge numbers produced by relu-oriented CNN
我有一个 CNN,其结构与 AlexNet 很接近,见下文:
Convolutional Neural Network structure:
100x100x3 Input image
25x25x12 Convolutional layer: 4x4x12, stride = 4, padding = 0
12x12x12 Max pooling layer: 3x3, stride = 2
12x12x24 Convolutional layer: 5x5x24, stride = 1, padding = 2
5x5x24 Max pooling layer: 4x4, stride = 2
300x1x1 Flatten layer: 600 -> 300
300x1x1 Fully connected layer: 300
3x1x1 Fully connected layer: 3
显然,只有最大池化层和卷积层,数字将接近 0 和无穷大,具体取决于权重的负值。我想知道有什么方法可以解决这个问题,因为我想避免大量使用。
由此产生的一个问题是,如果您在最后一层使用 sigmoid。看到 sigmoid 的导数是 s(x)*(1-s(x))
。拥有更大的数字将不可避免地使 sigmoid 的值为 1,因此您会注意到在 back prop 上,您有 1*(1-1)
,这显然不会下降得太好。
所以我想知道有什么方法可以尝试保持较低的数字。
用 python 标记,因为这是我实现的。我使用了自己的代码。
我在 AI 堆栈交换(它更适合)上问了这个问题,通过实施正确的权重初始化,数字不会在向前 或 向后爆炸或消失经过。看这里:https://ai.stackexchange.com/questions/13106/how-are-exploding-numbers-in-a-forward-pass-of-a-cnn-combated
我有一个 CNN,其结构与 AlexNet 很接近,见下文:
Convolutional Neural Network structure:
100x100x3 Input image
25x25x12 Convolutional layer: 4x4x12, stride = 4, padding = 0
12x12x12 Max pooling layer: 3x3, stride = 2
12x12x24 Convolutional layer: 5x5x24, stride = 1, padding = 2
5x5x24 Max pooling layer: 4x4, stride = 2
300x1x1 Flatten layer: 600 -> 300
300x1x1 Fully connected layer: 300
3x1x1 Fully connected layer: 3
显然,只有最大池化层和卷积层,数字将接近 0 和无穷大,具体取决于权重的负值。我想知道有什么方法可以解决这个问题,因为我想避免大量使用。
由此产生的一个问题是,如果您在最后一层使用 sigmoid。看到 sigmoid 的导数是 s(x)*(1-s(x))
。拥有更大的数字将不可避免地使 sigmoid 的值为 1,因此您会注意到在 back prop 上,您有 1*(1-1)
,这显然不会下降得太好。
所以我想知道有什么方法可以尝试保持较低的数字。
用 python 标记,因为这是我实现的。我使用了自己的代码。
我在 AI 堆栈交换(它更适合)上问了这个问题,通过实施正确的权重初始化,数字不会在向前 或 向后爆炸或消失经过。看这里:https://ai.stackexchange.com/questions/13106/how-are-exploding-numbers-in-a-forward-pass-of-a-cnn-combated