在哪里可以找到某些 Numpy 方法的效率 O(n)?

Where can I find the efficiency O(n) of some Numpy methods?

我正在做一个学校项目,他们询问了一些 Numpy 方法的效率 O(n),但我找不到它们。谁能告诉我在哪里可以找到这些?

示例方法如:

numpy.linspace(x,y,z) numpy.meshgrid(x,y) numpy.zeroes(x,y)

您可以简单地测量不同问题大小的执行时间来估计时间复杂度,

  • numpy.zeros(n) : non-deterministic
  • numpy.meshgrid(x,y) : O(n**2)
  • numpy.linspace(0, 1, n) : O(n**1.6)

例如,下面是衡量 numpy.meshgrid(x,y) 的时间复杂度的代码,它也可以用于其他 numpy 函数,

In [1]: import numpy as np
   ...: from time import time
   ...: import matplotlib.pyplot as plt
   ...: from scipy.optimize import curve_fit
   ...: %matplotlib inline
   ...: 
   ...: def complexity_model(x, n, A, C):
   ...:     return A*x**n + C
   ...: 
   ...: problem_size = np.logspace(2, 4, 10)
   ...: 
   ...: res = []
   ...: for N in problem_size:
   ...:     x = np.linspace(0, 1, N)
   ...:     y = x.copy()
   ...:     
   ...:     t0 = time()
   ...:     np.meshgrid(x,y)
   ...:     dt = time() - t0
   ...:     res.append(dt)
   ...: 
   ...: nn = np.logspace(np.log10(problem_size.min()), np.log10(problem_size.max()), 100)  
   ...: 
   ...: time_to_solution = np.asarray(res)
   ...: fig, ax = plt.subplots(1,1)
   ...: ax.loglog(problem_size, time_to_solution, 'o-b')
   ...: 
   ...: mask = problem_size > 100 # ignore initial points
   ...: 
   ...: popt, _ = curve_fit(complexity_model, problem_size[mask],
   ...:                               time_to_solution[mask],
   ...:                               p0=(1.0, 1.0,  0.0) )
   ...: print(popt)
   ...: ax.loglog(nn, complexity_model(nn, *popt), '--k')
   ...: 
   ...: 
   ...: ax.set_xlabel('Problem size: N')
   ...: ax.set_ylabel('Time to solution 
  [  1.94816942e+00   1.40955397e-08  -7.33862899e-04]

给出以下曲线,

对于足够大的数组大小,numpy.meshgrid(x,y) 的时间复杂度为 O(n**α)α = 1.95 ≈ 2